1
|
Wu B, Li B, He X, Cheng X, Ren J, Liu J. Nonadiabatic Field: A Conceptually Novel Approach for Nonadiabatic Quantum Molecular Dynamics. J Chem Theory Comput 2025; 21:3775-3813. [PMID: 40192130 PMCID: PMC12020003 DOI: 10.1021/acs.jctc.5c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/06/2025] [Accepted: 03/19/2025] [Indexed: 04/23/2025]
Abstract
Reliable trajectory-based nonadiabatic quantum dynamics methods at the atomic/molecular level are critical for the practical understanding and rational design of many important processes in real large/complex systems, where the quantum dynamical behavior of electrons and that of nuclei are coupled. The paper reports latest progress of nonadiabatic field (NaF), a conceptually novel approach for nonadiabatic quantum dynamics with independent trajectories. Substantially different from the mainstreams of Ehrenfest-like dynamics and surface hopping methods, the nuclear force in NaF involves the nonadiabatic force arising from the nonadiabatic coupling between different electronic states, in addition to the adiabatic force contributed by a single adiabatic electronic state. NaF is capable of faithfully describing the interplay between electronic and nuclear motion in a broad regime, which covers where the relevant electronic states keep coupled in a wide range or all the time and where the bifurcation characteristic of nuclear motion is essential. NaF is derived from the exact generalized phase space formulation with coordinate-momentum variables, where constraint phase space (CPS) is employed for discrete electronic-state degrees of freedom (DOFs) and infinite Wigner phase space is used for continuous nuclear DOFs. We propose efficient integrators for the equations of motion of NaF in both adiabatic and diabatic representations. Since the formalism in the CPS formulation is not unique, NaF can in principle be implemented with various phase space representations of the time correlation function (TCF) for the time-dependent property. They are applied to a suite of representative gas-phase and condensed-phase benchmark models where numerically exact results are available for comparison. It is shown that NaF is relatively insensitive to the phase space representation of the electronic TCF and will be a potential tool for practical and reliable simulations of the quantum mechanical behavior of both electronic and nuclear dynamics of nonadiabatic transition processes in real systems.
Collapse
Affiliation(s)
- Baihua Wu
- Beijing
National Laboratory for Molecular Sciences, Institute of Theoretical
and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bingqi Li
- Beijing
National Laboratory for Molecular Sciences, Institute of Theoretical
and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xin He
- Beijing
National Laboratory for Molecular Sciences, Institute of Theoretical
and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiangsong Cheng
- Beijing
National Laboratory for Molecular Sciences, Institute of Theoretical
and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiajun Ren
- Key
Laboratory of Theoretical and Computational Photochemistry, Ministry
of Education, College of Chemistry, Beijing
Normal University, Beijing 100875, China
| | - Jian Liu
- Beijing
National Laboratory for Molecular Sciences, Institute of Theoretical
and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
He X, Wu B, Shang Y, Li B, Cheng X, Liu J. New phase space formulations and quantum dynamics approaches. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xin He
- Beijing National Laboratory for Molecular Sciences Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University Beijing China
| | - Baihua Wu
- Beijing National Laboratory for Molecular Sciences Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University Beijing China
| | - Youhao Shang
- Beijing National Laboratory for Molecular Sciences Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University Beijing China
| | - Bingqi Li
- Beijing National Laboratory for Molecular Sciences Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University Beijing China
| | - Xiangsong Cheng
- Beijing National Laboratory for Molecular Sciences Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University Beijing China
| | - Jian Liu
- Beijing National Laboratory for Molecular Sciences Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University Beijing China
| |
Collapse
|
3
|
Kim HW, Rhee YM. Two-oscillator mapping modification of the Poisson bracket mapping equation formulation of the quantum-classical Liouville equation. J Chem Phys 2020; 153:214103. [PMID: 33291890 DOI: 10.1063/5.0027799] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mapping basis solutions provide efficient ways for simulating mixed quantum-classical (MQC) dynamics in complex systems by matching multiple quantum states of interest to some fictitious physical states. Recently, various MQC methods were devised such that two harmonic oscillators are employed to represent each electronic state, showing improvements over one-oscillator-based methods. Here, we introduce and analyze newly modified mapping approximations of the quantum-classical Liouville equation (QCLE) using two oscillators for each electronic state. We design two separate mapping relations that we can adopt toward simulating dynamics and computing expectation values. Through the process, two MQC methods can be constructed, one of which actually reproduces the population dynamics of the forward and backward trajectory solution of QCLE. By applying the methods to spin-boson systems with a range of parameters, we find out that the choice of mapping relations greatly affects the simulation results. We also show that further improvement is possible through using modified identity operator formulations. Our findings may be helpful in constructing improved MQC methods in the future.
Collapse
Affiliation(s)
- Hyun Woo Kim
- Center for Molecular Modeling and Simulation, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, South Korea
| | - Young Min Rhee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
4
|
Tao G. Topology of quantum coherence in singlet fission: Mapping out spin micro-states in quasi-classical nonadiabatic simulations. J Chem Phys 2020; 152:074305. [DOI: 10.1063/1.5139538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Guohua Tao
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China and Shenzhen Key Laboratory of New Energy Materials by Design, Peking University, Shenzhen 518055, China
| |
Collapse
|
5
|
Tao G. Topology of quantum coherence networks in singlet fission: mapping exciton states into real space and the dislocation induced three dimensional manifolds. Phys Chem Chem Phys 2020; 22:1258-1267. [PMID: 31850461 DOI: 10.1039/c9cp05102c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An understanding of the global structure of quantum coherence networks in coupled multistate systems is of great importance for the development of emerging quantum technologies such as quantum control and quantum materials design. Here, we study the topology of a quantum coherence network of a typical singlet exciton fission system by mapping the exciton states into crystal structures in real space. The defects in crystals could lead to changes in the topological structures, and also fission dynamics. In particular, we demonstrate that the dislocation induced three dimensional manifold, which differs from its lower dimensional counterparts globally, could generate exotic global structures, such as chiral spirals, and modulate singlet fission substantially. The findings may shed light on the new possibilities of engineering effective structures for fission materials.
Collapse
Affiliation(s)
- Guohua Tao
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China. and Shenzhen Key Laboratory of New Energy Materials by Design, Peking University, Shenzhen, 518055, China
| |
Collapse
|
6
|
Ibele LM, Curchod BFE. A molecular perspective on Tully models for nonadiabatic dynamics. Phys Chem Chem Phys 2020; 22:15183-15196. [DOI: 10.1039/d0cp01353f] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We present a series of standardized molecular tests for nonadiabatic dynamics, reminiscent of the one-dimensional Tully models proposed in 1990.
Collapse
Affiliation(s)
- Lea M. Ibele
- Department of Chemistry
- Durham University
- Durham DH1 3LE
- UK
| | | |
Collapse
|
7
|
Zheng J, Xie Y, Jiang S, Long Y, Ning X, Lan Z. Initial sampling in symmetrical quasiclassical dynamics based on Li-Miller mapping Hamiltonian. Phys Chem Chem Phys 2019; 21:26502-26514. [PMID: 31777888 DOI: 10.1039/c9cp03975a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A symmetrical quasiclassical (SQC) dynamics approach based on the Li-Miller (LM) mapping Hamiltonian (SQC-LM) was employed to describe nonadiabatic dynamics. In principle, the different initial sampling procedures may be applied in the SQC-LM dynamics, and the results may be dependent on different initial sampling. We provided various initial sampling approaches and checked their influence. We selected two groups of models including site-exciton models for exciton dynamics and linear vibronic coupling models for conical intersections to test the performance of SQC-LM dynamics with the different initial sampling methods. The results were examined with respect to those of the accurate multiconfigurational time-dependent Hartree (MCTDH) quantum dynamics. For both the models, the SQC-LM method more-or-less gives a reasonable description of the population dynamics, while the influence of the initial sampling approaches on the final results is noticeable. It seems that the suitable initial sampling methods should be determined by the system under study. This indicates that the combination of the SQC-LM method with a suitable sampling approach may be a potential method in the description of nonadiabatic dynamics.
Collapse
Affiliation(s)
- Jie Zheng
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles Clothing, Qingdao University, Qingdao 266071, China.
| | | | | | | | | | | |
Collapse
|
8
|
Tao G. Nonadiabatic simulation of singlet fission dynamics in tetracene clusters: The topology of quantum coherence in a global view. J Chem Phys 2019. [DOI: 10.1063/1.5100196] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Guohua Tao
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China and Shenzhen Key Laboratory of New Energy Materials by Design, Peking University, Shenzhen 518055, China
| |
Collapse
|
9
|
Martens CC. Surface Hopping without Momentum Jumps: A Quantum-Trajectory-Based Approach to Nonadiabatic Dynamics. J Phys Chem A 2019; 123:1110-1128. [DOI: 10.1021/acs.jpca.8b10487] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Craig C. Martens
- University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
10
|
Xie Y, Zheng J, Lan Z. Performance evaluation of the symmetrical quasi-classical dynamics method based on Meyer-Miller mapping Hamiltonian in the treatment of site-exciton models. J Chem Phys 2018; 149:174105. [DOI: 10.1063/1.5047002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yu Xie
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
- The Environmental Research Institute; MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Jie Zheng
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
| | - Zhenggang Lan
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
- The Environmental Research Institute; MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
11
|
Zheng J, Xie Y, Jiang SS, Long YZ, Ning X, Lan ZG. Ultrafast Electron Transfer with Symmetrical Quasi-classical Dynamics based on Mapping Hamiltonian and Quantum Dynamics based on ML-MCTDH. CHINESE J CHEM PHYS 2017. [DOI: 10.1063/1674-0068/30/cjcp1711210] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Jie Zheng
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles Clothing, Qingdao University, Qingdao 266071, China
- College of Physics, Qingdao University, Qingdao 266071, China
| | - Yu Xie
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sheng-shi Jiang
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun-ze Long
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles Clothing, Qingdao University, Qingdao 266071, China
- College of Physics, Qingdao University, Qingdao 266071, China
| | - Xin Ning
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles Clothing, Qingdao University, Qingdao 266071, China
| | - Zheng-gang Lan
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Yang Y, Fang WH, Long R. Disparity in Photoexcitation Dynamics between Vertical and Lateral MoS 2/WSe 2 Heterojunctions: Time-Domain Simulation Emphasizes the Importance of Donor-Acceptor Interaction and Band Alignment. J Phys Chem Lett 2017; 8:5771-5778. [PMID: 29129078 DOI: 10.1021/acs.jpclett.7b02779] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Two-dimensional transition metal dichalcogenides (TMDs) heterojunctions are appealing candidates for optoelectronics and photovoltaics. Using time-domain density functional theory combined with nonadiabatic (NA) molecular dynamics, we show that photoexcitation dynamics exhibit a significant difference in the vertical and lateral MoS2/WSe2 heterojunctions arising from the disparity in the donor-acceptor interaction and fundamental band alignment. The obtained electron transfer time scale in the vertical heterojunction shows excellent agreement with experiment. Hole transfer proceeds 1.5 times slower. The electron-hole recombination is 3 orders of magnitude longer than the charge separation, which favors solar cell applications. On the contrary, the lateral heterojunction shows no band offsets steering charge separation. The excited electron is localized at the interface that attracts holes to form an exciton-like state due to Coulomb interaction, suggesting potential applications in light-emitting devices. The coupled electron and hole wave functions increase NA coupling and the coherence time, accelerating electron-hole recombination by a factor of 3 compared with the vertical case. The atomistic studies advance our understanding of the photoinduced charge-phonon dynamics in TMDs heterojunctions.
Collapse
Affiliation(s)
- Yating Yang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University , Beijing 100875, People's Republic of China
| | - Wei-Hai Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University , Beijing 100875, People's Republic of China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University , Beijing 100875, People's Republic of China
| |
Collapse
|