1
|
Kim H, Park SM, Kwon CH. Deciphering the electronic structure and conformational stability of 2-pyridinecarboxaldehyde. Phys Chem Chem Phys 2025; 27:10739-10747. [PMID: 40351193 DOI: 10.1039/d5cp00792e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
The conformational structures and ionisation dynamics of 2-pyridinecarboxaldehyde (2-PCA) were explored using high-resolution vacuum ultraviolet mass-analysed threshold ionisation (VUV-MATI) spectroscopy, complemented by Franck-Condon (FC) simulations and quantum chemical calculations. The precise adiabatic ionisation energy of 2-PCA was determined to be 76 589 ± 4 cm-1 (9.4958 ± 0.0005 eV), which is notably lower than the previous values obtained from electron impact ionisation studies. The vibrationally resolved VUV-MATI spectrum of the molecule confirmed that ionisation predominantly originates from its s-trans conformer, with no significant contribution from its s-cis conformer, indicating that the interconversion barrier effectively limits the population of this species under supersonic expansion conditions. Molecular and natural bond orbital analyses revealed that the highest occupied molecular orbital of the s-trans conformer is primarily composed of a nitrogen nonbonding orbital, which interacts with the oxygen lone pairs of the formyl group. This interaction stabilises the electronic structure of the conformer, resulting in an increased ionisation energy compared with pyridine. FC analysis further demonstrated that vibrational excitations in the cationic state are predominantly associated with the in-plane ring and formyl bending modes, producing distinct vibrational progressions in the VUV-MATI spectrum. These findings provide not only valuable insights into the electronic structure, conformational stability, and ionisation dynamics of 2-PCA, but also a deeper understanding of the effect of functional-group substitution in pyridine derivatives. Moreover, the results underscore the effectiveness of VUV-MATI spectroscopy in resolving conformer-specific ionisation processes, paving the way for further investigations into the electronic properties of heterocyclic molecules.
Collapse
Affiliation(s)
- Hyojung Kim
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Sung Man Park
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Chan Ho Kwon
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
2
|
Volkov PA, Khrapova KO, Telezhkin AA, Vyi EM, Trofimov AB, Bidusenko IA, Albanov AI, Belogolova AM, Trofimov BA. One-pot three-component synthesis of stable pyrrole-3-selones using propargyl amines, acyl chlorides, and elemental selenium. Org Biomol Chem 2025; 23:4702-4709. [PMID: 40235458 DOI: 10.1039/d5ob00200a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Stable pyrrole-tailored selones, 1,2,5-trisubstituted-1,2-dihydro-3H-pyrrole-3-selones, have been synthesized in up to 75% yield from aminoacetylenic ketones and elemental selenium (KOH/EtOH, room temperature, 10-11 h). The work is mainly focused on the one-pot synthesis of these compounds (50-75% yields). This synthesis has been achieved via the reactions of propargyl amines with acyl chlorides in the presence of a Pd/Cu catalyst (toluene, 40-45 °C, 2-3 h) followed by the addition of a pre-heated mixture of Se/KOH (SnCl2)/EtOH at room temperature. Our quantum-chemical calculations predict an exceptionally large ground-state dipole moment of about 7.6 Debye and an anomalously low vertical ionization energy of about 6.5 eV for the molecules under study. According to our calculations, these remarkable properties are due to the fact that the CSe bond is incorporated into the common π-system of the 3H-pyrrole ring, allowing charge transfer from N to Se. The latter effect also contributes to the exceptional stability of the reported selones.
Collapse
Affiliation(s)
- Pavel A Volkov
- A. E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 1, Favorsky Str., Irkutsk 664033, Russian Federation.
| | - Kseniya O Khrapova
- A. E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 1, Favorsky Str., Irkutsk 664033, Russian Federation.
| | - Anton A Telezhkin
- A. E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 1, Favorsky Str., Irkutsk 664033, Russian Federation.
| | - Ekaterina M Vyi
- A. E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 1, Favorsky Str., Irkutsk 664033, Russian Federation.
| | - Alexander B Trofimov
- A. E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 1, Favorsky Str., Irkutsk 664033, Russian Federation.
- Laboratory of Quantum Chemical Modeling of Molecular Systems, Irkutsk State University, Karl-Marx Str. 1, Irkutsk 664003, Russian Federation
| | - Ivan A Bidusenko
- A. E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 1, Favorsky Str., Irkutsk 664033, Russian Federation.
| | - Alexander I Albanov
- A. E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 1, Favorsky Str., Irkutsk 664033, Russian Federation.
| | - Alexandra M Belogolova
- A. E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 1, Favorsky Str., Irkutsk 664033, Russian Federation.
| | - Boris A Trofimov
- A. E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 1, Favorsky Str., Irkutsk 664033, Russian Federation.
| |
Collapse
|
3
|
Park SM, Kim H, Kwon CH. Investigating valence orbitals and cationic structure of 2,6-difluoropyridine via high-resolution VUV-MATI spectroscopy and Franck-Condon simulations. Phys Chem Chem Phys 2024; 26:29805-29812. [PMID: 39605308 DOI: 10.1039/d4cp03359k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Pyridine derivatives are fundamental in fields such as organic chemistry, materials science, and pharmaceuticals, largely due to their versatile electronic properties. Fluorination of pyridine significantly alters these properties, yet the specific effects of the position and number of fluorine atoms on valence orbitals and cationic structures remain not fully understood. This study examines the impact of fluorine substitution on the valence orbitals and cationic structures of various pyridine derivatives, with a particular emphasis on 2,6-difluoropyridine (2,6-DFP). Using high-resolution vacuum ultraviolet mass-analysed threshold ionisation (VUV-MATI) spectroscopy, the adiabatic ionisation energy of 2,6-DFP was determined to be 78 365 ± 3 cm-1 (9.7160 ± 0.0004 eV). Franck-Condon simulations were conducted to interpret the VUV-MATI spectra, providing detailed insights into the molecular structure and vibrational modes of the cationic form. The analysis indicated a symmetry shift from C2V to C1 upon ionisation, highlighted by the presence of out-of-plane ring-bending modes. Natural bond orbital analysis identified the highest occupied molecular orbital (HOMO) and HOMO-1 as π-orbitals, with HOMO-2 being a nonbonding orbital. The introduction of two ortho-fluorine substitutions in 2,6-DFP significantly influenced this electronic configuration, stabilising the nonbonding orbital through interactions with the two fluorine σ-type lone pairs. This stabilisation notably altered the valence orbital ordering compared to that of 2-fluoropyridine, resulting in a substantial difference in the binding energies between the HOMO and HOMO-1. This research provides a deeper understanding of how halogen substitution affects the electronic properties of pyridine derivatives, promoting research in the field of physical chemistry.
Collapse
Affiliation(s)
- Sung Man Park
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Hyojung Kim
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Chan Ho Kwon
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
4
|
Park SM, Kim H, Kwon CH. Impact of chlorine substitution on valence orbitals and ionization dynamics in 3-chloropyridine: Insights from high-resolution vacuum ultraviolet mass-analyzed threshold ionization study. J Chem Phys 2024; 161:174302. [PMID: 39484903 DOI: 10.1063/5.0233300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024] Open
Abstract
In this study, the effects of chlorine substitution on the valence orbitals and electronic states of 3-chloropyridine (3-CP) were investigated utilizing high-resolution vacuum ultraviolet mass-analyzed threshold ionization (VUV-MATI) spectroscopy and computational methods. High-quality vibrational spectra were obtained from the VUV-MATI spectra of 3-CP isotopomers (35Cl and 37Cl), revealing high-quality vibrational spectra for the lowest cationic states. The adiabatic ionization energies (AIEs) of these isotopomers were accurately determined, providing detailed information about the electronic structure and ionization dynamics. Intense spectra peaks were linked with the D1 excited state of the 3-CP cation, with vibronic transitions in this state closely matching those predicted by Franck-Condon simulations. This provided insights into the cationic structure and the roles of the highest occupied molecular orbital (HOMO) and the HOMO-1. The HOMO was primarily a π orbital of the pyridine ring, while the HOMO-1 consisted of nonbonding orbitals. The AIEs suggested that meta-chlorine substitution stabilizes nonbonding orbitals less effectively than ortho substitution, indicating closely spaced electronic states in the 3-CP cation. Minor discrepancies in vibrational frequencies and intensities, particularly above 800 cm-1, suggested the presence of vibronic coupling, warranting further investigation. Overall, this study provided a comprehensive understanding of the vibronic and ionization properties of 3-CP, emphasizing the influence of the position of the chlorine substitution on molecular orbitals and the value of advanced theoretical and experimental approaches for analyzing the vibrational spectra of complex molecules.
Collapse
Affiliation(s)
- Sung Man Park
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyojung Kim
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Chan Ho Kwon
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
5
|
Leitner J, Dempwolff AL, Dreuw A. Fourth-Order Algebraic Diagrammatic Construction for Electron Detachment and Attachment: The IP- and EA-ADC(4) Methods. J Phys Chem A 2024; 128:7680-7690. [PMID: 39213621 DOI: 10.1021/acs.jpca.4c03037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
We present a non-Dyson fourth-order algebraic diagrammatic construction formulation of the electron propagator, featuring the distinct IP- and EA-ADC(4) schemes for the treatment of ionization and electron attachment processes. The algebraic expressions have been derived automatically using the intermediate state representation approach and implemented in the Q-Chem quantum-chemical program package. The performance of the novel methods is assessed with respect to high-level reference data for ionization potentials and electron affinities of closed- and open-shell systems. While only minor improvements over the corresponding third-order methods are observed for one-hole ionization and one-particle electron attachment processes from closed-shell systems (MAEIP-ADC(4) = 0.27 eV and MAEEA-ADC(4) = 0.05 eV), a significantly enhanced performance is found in case of open-shell reference states (MAEIP-ADC(4) = 0.11 eV and MAEEA-ADC(4) = 0.02 eV). A particularly appealing feature of the novel methods is their accurate treatment of satellite transitions. For closed-shell reference states, we obtain accuracies of MAEIP-ADC(4) = 0.81 eV and MAEEA-ADC(4) = 0.27 eV, while in case of open-shell reference states, mean absolute errors of MAEIP-ADC(4) = 0.15 eV and MAEEA-ADC(4) = 0.27 eV are found.
Collapse
Affiliation(s)
- Jonas Leitner
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Adrian L Dempwolff
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Zhou J, Jia S, Xue X, Skitnevskaya AD, Wang E, Wang X, Hao X, Zeng Q, Kuleff AI, Dorn A, Ren X. Revealing the Role of N Heteroatoms in Noncovalent Aromatic Interactions by Ultrafast Intermolecular Coulombic Decay. J Phys Chem Lett 2024; 15:1529-1538. [PMID: 38299504 DOI: 10.1021/acs.jpclett.3c02979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Despite the widely recognized importance of noncovalent interactions involving aromatic rings in many fields, our understanding of the underlying forces and structural patterns, especially the impact of heteroaromaticity, is still incomplete. Here, we investigate the relaxation processes that follow inner-valence ionization in a range of molecular dimers involving various combinations of benzene, pyridine, and pyrimidine, which initiate an ultrafast intermolecular Coulombic decay process. Multiparticle coincidence momentum spectroscopy, combined with ab initio calculations, enables us to explore the principal orientations of these fundamental dimers and, thus, to elucidate the influence of N heteroatoms on the relative preference of the aromatic π-stacking, H-bonding, and CH-π interactions and their dependence on the number of nitrogen atoms in the rings. Our studies reveal a sensitive tool for the structural imaging of molecular complexes and provide a more complete understanding of the effects of N heteroatoms on the noncovalent aromatic interactions at the molecular level.
Collapse
Affiliation(s)
- Jiaqi Zhou
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shaokui Jia
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaorui Xue
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Anna D Skitnevskaya
- Laboratory of Quantum Chemistry, Irkutsk State University, Irkutsk 664003, Russia
| | - Enliang Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xing Wang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xintai Hao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qingrui Zeng
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Alexander I Kuleff
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Heidelberg 69120, Germany
| | - Alexander Dorn
- Max-Planck-Institut für Kernphysik, Heidelberg 69117, Germany
| | - Xueguang Ren
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
- Max-Planck-Institut für Kernphysik, Heidelberg 69117, Germany
| |
Collapse
|
7
|
Palmer MH, Coreno M, de Simone M, Grazioli C, Jones NC, Hoffmann SV, Aitken RA, Sonecha DK. The ionic and ground states of gamma-pyrone. The photoionization spectrum studied by synchrotron radiation and interpreted by configuration interaction and density functional calculations. J Chem Phys 2023; 158:014304. [PMID: 36610975 DOI: 10.1063/5.0128764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A synchrotron-based photoionization spectrum up to 27 eV represents a considerable improvement in resolution over early He(I) and He(II) spectra. Symmetry-adapted coupled cluster calculations of the ionic state sequence give the sequence of state vertical ionization energies (VIE) as 12B2 < 12B1 < 12A2 < 22B1 < 12A1. Generally, these symmetry-adapted cluster configuration interactions VIE match reasonably well with the experimental spectrum over this wide energy range. Density functional calculations of the corresponding adiabatic terms (AIE) were also performed. Higher energy ionic states were determined by complete active space self-consistent field methods; these include all π-ionizations and some σ-ionic states. These were analyzed by Franck-Condon (FC) procedures and compared with an experiment. The spectral onset is complex, where two states, later shown to be the 12B2 and 12B1 states, are strongly overlapping. The superposition of the FC vibrational structure in the 12B2 and 12B1 states accounts for most of the peaks arising at the onset of the photoelectron spectra. However, the small separation between these two ionic states makes vibronic interaction fairly inevitable. In the absence of Herzberg-Teller analyses for ionic states, we have sought and determined a transition state between the 12B2 and 12B1 states, showing that vibronic coupling does occur. The lack of degradation in the vibrational envelope of the higher of the two states contrasts with our previous work on the halogenobenzenes, where overlapping state envelopes led to considerable widening of the line width at half-height of the higher energy states.
Collapse
Affiliation(s)
- Michael H Palmer
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, Scotland, United Kingdom
| | - Marcello Coreno
- ISM-CNR, Instituto di Struttura della Materia, LD2 Unit, 34149 Trieste, Italy
| | - Monica de Simone
- IOM-CNR, Istituto Officina dei Materiali, Basovizza SS-14, Km 163.5, 34149 Trieste, Italy
| | - Cesare Grazioli
- IOM-CNR, Istituto Officina dei Materiali, Basovizza SS-14, Km 163.5, 34149 Trieste, Italy
| | - Nykola C Jones
- ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK, 8000 Aarhus C, Denmark
| | - Søren Vrønning Hoffmann
- ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK, 8000 Aarhus C, Denmark
| | - R Alan Aitken
- School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9ST, Scotland, United Kingdom
| | - Dheirya K Sonecha
- School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9ST, Scotland, United Kingdom
| |
Collapse
|
8
|
Zhang Y, Li W, Lei H, Dong X, Kenttämaa H. Differentiation of Seven Isomeric n-Pentylquinoline Radical Cations Based on Energy-Resolved Medium-Energy Collision-Activated Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:48-63. [PMID: 36507850 DOI: 10.1021/jasms.2c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Asphaltenes, a major and undesirable component of heavy crude oil, contain many different types of large aromatic compounds. These compounds include nitrogen-containing heteroaromatic compounds that are thought to be the main culprit in the deactivation of catalysts in crude oil refinery processes. Unfortunately, prevention of this is challenging as the structures and properties of the nitrogen-containing heteroaromatic compounds are poorly understood. To facilitate their structural characterization, an approach based on ion-trap collision-activated dissociation (ITCAD) tandem mass spectrometry followed by energy-resolved medium-energy collision-activated dissociation (ER-MCAD) was developed for the differentiation of seven isomeric molecular radical cations of n-pentylquinoline. The fragmentation of each isomer was found to be distinctly different and depended largely on the site of the alkyl side chain in the quinoline ring. In order to better understand the observed fragmentation pathways, mechanisms for the formation of several fragment ions were delineated based on quantum chemical calculations. The fast benzylic α-bond cleavage that dominates the fragmentation of analogous nonheteroaromatic alkylbenzenes was only observed for the 3-isomer as the major pathway due to the lack of favorable low-energy rearrangement reactions. All the other isomeric ions underwent substantially lower-energy rearrangement reactions as their alkyl chains were found to interact mostly via 6-membered transition states either with the quinoline nitrogen (2- and 8-isomers) or the adjacent carbon atom in the quinoline core (4-, 5-, 6-, and 7-isomers), which lowered the activation energies of the fragmentation reactions. The presented analytical approach will facilitate the structural characterization of nitrogen-containing heteroaromatic compounds in asphaltenes.
Collapse
Affiliation(s)
- Yuyang Zhang
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Wanru Li
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Haoran Lei
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Xueming Dong
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Hilkka Kenttämaa
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
9
|
Zhou J, Jia S, Skitnevskaya AD, Wang E, Hähnel T, Grigoricheva EK, Xue X, Li JX, Kuleff AI, Dorn A, Ren X. Concerted Double Hydrogen-Bond Breaking by Intermolecular Coulombic Decay in the Formic Acid Dimer. J Phys Chem Lett 2022; 13:4272-4279. [PMID: 35522820 DOI: 10.1021/acs.jpclett.2c00957] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydrogen bonds are ubiquitous in nature and of fundamental importance to the chemical and physical properties of molecular systems in the condensed phase. Nevertheless, our understanding of the structural and dynamical properties of hydrogen-bonded complexes in particular in electronic excited states remains very incomplete. Here, by using formic acid (FA) dimer as a prototype of DNA base pair, we investigate the ultrafast decay process initiated by removal of an electron from the inner-valence shell of the molecule upon electron-beam irradiation. Through fragment-ion and electron coincident momentum measurements and ab initio calculations, we find that de-excitation of an outer-valence electron at the same site can initiate ultrafast energy transfer to the neighboring molecule, which is in turn ionized through the emission of low-energy electrons. Our study reveals a concerted breaking of double hydrogen-bond in the dimer initiated by the ultrafast molecular rotations of two FA+ cations following this nonlocal decay mechanism.
Collapse
Affiliation(s)
- Jiaqi Zhou
- School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, Heidelberg 69117, Germany
| | - Shaokui Jia
- School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Anna D Skitnevskaya
- Laboratory of Quantum Chemistry, Irkutsk State University, Irkutsk 664003, Russia
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Heidelberg 69120, Germany
| | - Enliang Wang
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, Heidelberg 69117, Germany
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Theresa Hähnel
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Heidelberg 69120, Germany
| | - Emma K Grigoricheva
- Laboratory of Quantum Chemistry, Irkutsk State University, Irkutsk 664003, Russia
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Heidelberg 69120, Germany
| | - Xiaorui Xue
- School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian-Xing Li
- School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Alexander I Kuleff
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Heidelberg 69120, Germany
| | - Alexander Dorn
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, Heidelberg 69117, Germany
| | - Xueguang Ren
- School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, Heidelberg 69117, Germany
| |
Collapse
|
10
|
Helle N, Raeker T, Grotemeyer J. Studies of the First Electronically Excited State of 3-Fluoropyridine and Its Ionic Structure by Means of REMPI, Two-Photon MATI, One-Photon VUV-MATI Spectroscopy and Franck-Condon Analysis. Phys Chem Chem Phys 2022; 24:2412-2423. [PMID: 35019908 DOI: 10.1039/d1cp04636e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
3-Fluoropyridine (3-FP) has been investigated by means of two-photon resonance-enhanced multi photon ionization (REMPI), mass-analyzed threshold ionization (MATI) and one-photon vacuum-ultraviolet (VUV) MATI spectroscopy. The aim was the determination of the effect of m-fluorine substitution on the vibronic structure of the first electronically excited and ionic ground state. The S1 excitation energy has been determined to be 35 064 ± 2 cm-1 (4.3474 ± 0.0002 eV). Strong evidence of a distinct vibronic coupling via ν16b and ν[Wag.out.,16a] to one or both of the lowest 1ππ* states has been found, which results in a warped S1 minimum structure with C1 symmetry. The adiabatic ionization energy of the ionic ground state (14a', nN-LP orbital) has been determined to be 76 579 ± 6 cm-1 (9.4946 ± 0.0007 eV), which is the first value reported for this state. The origin of the D1 state (4a'', π-orbital) is located close by at 77 129 cm-1 (9.5628 eV). As a result of the D0-D1 vicinity, the ionic ground state is coupled to the D1 state via ν[Wag.out.,16a] and ν10a, which induces a twisted D0 geometry with C1 symmetry. Furthermore, for the first time two-photon and one-photon MATI spectra are presented together, which yield a much better understanding of the ionic vibronic structure in comparison to either of these experiments alone.
Collapse
Affiliation(s)
- Niklas Helle
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str. 1, 24118 Kiel, Germany.
| | - Tim Raeker
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str. 2, 24118 Kiel, Germany
| | - Juergen Grotemeyer
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str. 1, 24118 Kiel, Germany.
| |
Collapse
|
11
|
Helle N, Raeker T, Grotemeyer J. Investigation of the complex vibronic structure in the first excited and ionic ground states of 3-chloropyridine by means of REMPI and MATI spectroscopy and Franck-Condon analysis. Phys Chem Chem Phys 2021; 23:17917-17928. [PMID: 34378586 DOI: 10.1039/d1cp02406j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
3-Chloropyridine (3-CP) has been investigated by means of resonance-enhanced multi-photon ionization (REMPI) and mass-analyzed threshold ionization (MATI) spectroscopy to elucidate the effect of m-chlorine substitution on the vibronic structure of the first electronically excited and ionic ground states. The S1 excitation energy has been determined to be 34 840 ± 2 cm-1 (4.3196 ± 0.0002 eV) with a difference of less than 0.2 cm-1 between both isotopomers, which is the first reported value for this transition in the gas phase so far. The S1 state has been assigned to the 1π* ← n transition. It is subject to strong vibronic coupling via ν16b to one or both of the lowest 1ππ* states. In addition, strong coupling via at least one more non-totally symmetric vibration is very likely to exist but the vibration could not be identified yet. Overall, the coupling results in a minimum S1 structure with C1 symmetry. The adiabatic ionization energy of the nN-LP orbital (14a') has been determined to be 75 879 ± 6 cm-1 (9.4078 ± 0.0007 eV) with a difference of less than 2 cm-1 between the two isotopomers, which is the first value reported for this state so far. The ionic ground state exhibits a distinct vibronic coupling via ν16a and ν10a to either the D1 state (4a'') and/or D2 state (3a''), which results in a twisted D0 geometry with C1 symmetry. As a consequence of the warped geometry in both S1 and D0 states, very complicated MATI spectra were obtained when exciting S1 states at higher wavenumbers.
Collapse
Affiliation(s)
- Niklas Helle
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str. 1, 24118 Kiel, Germany.
| | | | | |
Collapse
|
12
|
Patanen M, Abid AR, Pratt ST, Kivimäki A, Trofimov AB, Skitnevskaya AD, Grigoricheva EK, Gromov EV, Powis I, Holland DMP. Valence shell photoelectron angular distributions and vibrationally resolved spectra of imidazole: A combined experimental-theoretical study. J Chem Phys 2021; 155:054304. [PMID: 34364329 DOI: 10.1063/5.0058983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Linearly polarized synchrotron radiation has been used to record polarization dependent valence shell photoelectron spectra of imidazole in the photon energy range 21-100 eV. These have allowed the photoelectron angular distributions, as characterized by the anisotropy parameter β, and the electronic state intensity branching ratios to be determined. Complementing these experimental data, theoretical photoionization partial cross sections and β-parameters have been calculated for the outer valence shell orbitals. The assignment of the structure appearing in the experimental photoelectron spectra has been guided by vertical ionization energies and spectral intensities calculated by various theoretical methods that incorporate electron correlation and orbital relaxation. Strong orbital relaxation effects have been found for the 15a', nitrogen lone-pair orbital. The calculations also predict that configuration mixing leads to the formation of several low-lying satellite states. The vibrational structure associated with ionization out of a particular orbital has been simulated within the Franck-Condon model using harmonic vibrational modes. The adiabatic approximation appears to be valid for the X 2A″ state, with the β-parameter for this state being independent of the level of vibrational excitation. However, for all the other outer valence ionic states, a disparity occurs between the observed and the simulated vibrational structure, and the measured β-parameters are at variance with the behavior expected at the level of the Franck-Condon approximation. These inconsistencies suggest that the excited electronic states may be interacting vibronically such that the nuclear dynamics occur over coupled potential energy surfaces.
Collapse
Affiliation(s)
- M Patanen
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, P. O. Box 3000, 90014 Oulu, Finland
| | - A R Abid
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, P. O. Box 3000, 90014 Oulu, Finland
| | - S T Pratt
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - A Kivimäki
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, P. O. Box 3000, 90014 Oulu, Finland
| | - A B Trofimov
- Laboratory of Quantum Chemical Modeling of Molecular Systems, Irkutsk State University, Karl Marx Str. 1, 664003 Irkutsk, Russia
| | - A D Skitnevskaya
- Laboratory of Quantum Chemical Modeling of Molecular Systems, Irkutsk State University, Karl Marx Str. 1, 664003 Irkutsk, Russia
| | - E K Grigoricheva
- Laboratory of Quantum Chemical Modeling of Molecular Systems, Irkutsk State University, Karl Marx Str. 1, 664003 Irkutsk, Russia
| | - E V Gromov
- Laboratory of Quantum Chemical Modeling of Molecular Systems, Irkutsk State University, Karl Marx Str. 1, 664003 Irkutsk, Russia
| | - I Powis
- School of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - D M P Holland
- Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD, United Kingdom
| |
Collapse
|
13
|
Hirao K, Bae HS, Song JW, Chan B. Koopmans'-Type Theorem in Kohn-Sham Theory with Optimally Tuned Long-Range-Corrected (LC) Functionals. J Phys Chem A 2021; 125:3489-3502. [PMID: 33874719 DOI: 10.1021/acs.jpca.1c01593] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the present study, we have investigated the applicability of long-range-corrected (LC) functionals to a Kohn-Sham (KS) Koopmans'-type theorem. Specifically, we have examined the performance of optimally tuned LCgau-core functionals (in combination with BOP and PW86-PW91 exchange-correlation functionals) by calculating the ionization potential (IP) within the context of Koopmans' prediction. In the LC scheme, the electron repulsion operator, 1/r12, is divided into short-range and long-range components using a standard error function, with a range separation parameter μ determining the weight of the two ranges. For each system that we have examined (H2O, CO, benzene, N2, HF, H2CO, C2H4, and five-membered ring compounds cyclo-C4H4X, with X = CH2, NH, O, and S, and pyridine), the value of μ is optimized to minimize the deviation of the negative HOMO energy from the experimental IP. Our results demonstrate the utility of optimally tuned LC functionals in predicting the IP of outer valence levels. The accuracy is comparable to that of highly accurate ab initio theory. However, our Koopmans' method is less accurate for the inner valence and core levels. Overall, our results support the notion that orbitals in KS-DFT, when obtained with the LC functional, provide an accurate one-electron energy spectrum. This method represents a one-electron orbital theory that is attractive in its simple formulation and effective in its practical application.
Collapse
Affiliation(s)
- Kimihiko Hirao
- Fukui Institute for Fundamental Chemistry, Kyoto University, Takano, Nishihiraki-cho 34-4, Sakyo-ku, Kyoto 606-8103, Japan.,RIKEN Center for Computational Science, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe 650-0047, Japan
| | - Han-Seok Bae
- Department of Chemistry Education, Daegu University, Gyeongsan 113-8656, Korea
| | - Jong-Won Song
- Department of Chemistry Education, Daegu University, Gyeongsan 113-8656, Korea
| | - Bun Chan
- Graduate School of Engineering, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
| |
Collapse
|
14
|
Trofimov AB, Skitnevskaya AD, Grigoricheva EK, Gromov EV, Köppel H. Vibronic coupling in the ground and excited states of the pyridine radical cation. J Chem Phys 2020; 153:164307. [DOI: 10.1063/5.0024446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- A. B. Trofimov
- Laboratory of Quantum Chemical Modeling of Molecular Systems, Irkutsk State University, Karl Marx Str. 1, 664003 Irkutsk, Russia
- Favorsky’s Institute of Chemistry, SB RAS, Favorsky Str. 1, 664033 Irkutsk, Russia
| | - A. D. Skitnevskaya
- Laboratory of Quantum Chemical Modeling of Molecular Systems, Irkutsk State University, Karl Marx Str. 1, 664003 Irkutsk, Russia
| | - E. K. Grigoricheva
- Laboratory of Quantum Chemical Modeling of Molecular Systems, Irkutsk State University, Karl Marx Str. 1, 664003 Irkutsk, Russia
| | - E. V. Gromov
- Laboratory of Quantum Chemical Modeling of Molecular Systems, Irkutsk State University, Karl Marx Str. 1, 664003 Irkutsk, Russia
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
- Max-Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | - H. Köppel
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| |
Collapse
|
15
|
Varras PC, Gritzapis PS. Can the symmetrical Dewar pyridine be observed experimentally? A theoretical study. Mol Phys 2020. [DOI: 10.1080/00268976.2019.1662126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Panayiotis C. Varras
- Department of Chemistry, Section of Organic Chemistry & Biochemistry, University of Ioannina, Ioannina, Greece
| | - Panagiotis S. Gritzapis
- Molecular Biology and Genetics Department, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
16
|
Dempwolff AL, Paul AC, Belogolova AM, Trofimov AB, Dreuw A. Intermediate state representation approach to physical properties of molecular electron-detached states. I. Theory and implementation. J Chem Phys 2020; 152:024113. [DOI: 10.1063/1.5137792] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Adrian L. Dempwolff
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, D-69120 Heidelberg, Germany
| | - Alexander C. Paul
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Alexandra M. Belogolova
- Laboratory of Quantum Chemistry, Irkutsk State University, Karl Marx Street 1, 664003 Irkutsk, Russia
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia
| | - Alexander B. Trofimov
- Laboratory of Quantum Chemistry, Irkutsk State University, Karl Marx Street 1, 664003 Irkutsk, Russia
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, D-69120 Heidelberg, Germany
| |
Collapse
|
17
|
Sorbelli D, Belanzoni P, Saue T, Belpassi L. Ground and excited electronic states of AuH 2via detachment energies on AuH 2− using state-of-the-art relativistic calculations. Phys Chem Chem Phys 2020; 22:26742-26752. [DOI: 10.1039/d0cp05204c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AuH2 is not as simple as it may seem at first glance!
Collapse
Affiliation(s)
- Diego Sorbelli
- Department of Chemistry
- Biology and Biotechnology
- University of Perugia
- 06123 Perugia
- Italy
| | - Paola Belanzoni
- Department of Chemistry
- Biology and Biotechnology
- University of Perugia
- 06123 Perugia
- Italy
| | - Trond Saue
- Laboratoire de Chimie et Physique Quantiques
- UMR 5626 CNRS – Université Toulouse III-Paul Sabatier
- F-31062 Toulouse
- France
| | - Leonardo Belpassi
- Institute of Chemical Science and Technologies “Giulio Natta” (CNR-SCITEC) c/o Department of Chemistry
- Biology and Biotechnology
- University of Perugia
- 06123 Perugia
- Italy
| |
Collapse
|
18
|
Lee YR, Choi N, Kwon CH. Determination of the highest occupied molecular orbital and cationic structure of 2-chloropyridine by one-photon VUV-MATI spectroscopy and Franck–Condon fitting. Phys Chem Chem Phys 2020; 22:20858-20866. [DOI: 10.1039/d0cp03365k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Substitution of a chlorine atom for the H in pyridine alters the HOMO of the molecule, which ultimately affects the cationic structure.
Collapse
Affiliation(s)
- Yu Ran Lee
- New and Renewable Energy Research Center
- Ewha Womans University
- Seoul 03760
- Korea
| | - Nayoung Choi
- Department of Chemistry and Institute for Molecular Science and Fusion Technology
- Kangwon National University
- Chuncheon 24341
- Korea
| | - Chan Ho Kwon
- Department of Chemistry and Institute for Molecular Science and Fusion Technology
- Kangwon National University
- Chuncheon 24341
- Korea
| |
Collapse
|
19
|
Tikhonov SA, Fedorenko EV, Mirochnik AG, Osmushko IS, Skitnevskaya AD, Trofimov AB, Vovna VI. Spectroscopic and quantum chemical study of difluoroboron β-diketonate luminophores: Isomeric acetylnaphtholate chelates. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 214:67-78. [PMID: 30769153 DOI: 10.1016/j.saa.2019.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/23/2019] [Accepted: 02/02/2019] [Indexed: 06/09/2023]
Abstract
The electronic structure and optical properties of the isomeric difluoroboron β-diketonates, 2,2-difluoro-4-methylnaphtho-[2,1-e]-1,3,2-dioxaborin (I) and 2,2-difluoro-4-methylnaphtho-[1,2-e]-1,3,2-dioxaborin (II), were studied by means of X-ray photoelectron, absorption and luminescence spectroscopies. The experimental results were interpreted using high-level ab initio quantum chemical computations, including the algebraic-diagrammatic construction method for the polarization propagator of the second and third orders (ADC(2) and ADC(3)), the outer-valence Green's function (OVGF) method, and the time-dependent density functional (TDDFT) approach. The X-ray photoelectron measurements were assigned in the entire energy range using the results of the Kohn-Sham orbital calculations which employed the B3LYP functional. Pronounced hypsochromic shift of crystal-state fluorescence was observed in I upon the lowering of temperature, which can be explained by the deterioration of the conditions for excimers formation. According to our results, remarkable feature of II, absent in I, is its phosphorescence at room temperature. Basing on our calculations, a decay mechanism for the S1 state was proposed, explaining the observed differences in the phosphorescence of I and II.
Collapse
Affiliation(s)
- Sergey A Tikhonov
- Far Eastern Federal University, School of Natural Sciences, Vladivostok 690950, Russian Federation.
| | - Elena V Fedorenko
- Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russian Federation
| | - Anatolii G Mirochnik
- Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russian Federation
| | - Ivan S Osmushko
- Far Eastern Federal University, School of Natural Sciences, Vladivostok 690950, Russian Federation
| | - Anna D Skitnevskaya
- Irkutsk State University, Laboratory of Quantum Chemistry, Irkutsk 664003, Russian Federation
| | - Alexander B Trofimov
- Irkutsk State University, Laboratory of Quantum Chemistry, Irkutsk 664003, Russian Federation; Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk 664033, Russian Federation
| | - Vitaliy I Vovna
- Far Eastern Federal University, School of Natural Sciences, Vladivostok 690950, Russian Federation
| |
Collapse
|
20
|
Malysheva SF, Kuimov VA, Trofimov AB, Belogorlova NA, Litvintsev YI, Belogolova AM, Gusarova NK, Trofimov BA. 2-Halopyridines in the triple reaction in the P /KOH/DMSO system to form tri(2-pyridyl)phosphine: Experimental and quantum-chemical dissimilarities. MENDELEEV COMMUNICATIONS 2018. [DOI: 10.1016/j.mencom.2018.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Belogolova EF, Doronina EP, Sidorkin VF. Assignment of photoelectron spectra of intramolecular silicon complexes: 1-vinyl- and 1-phenylsilatranes. Phys Chem Chem Phys 2018; 20:26210-26220. [DOI: 10.1039/c8cp04582h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The problematic photoelectron spectra of 1-vinyl- and 1-phenylsilatranes were theoretically studied and the correlation between the VIE and thedSiNwas proposed to be used for the identification of orbitals in the Si←N coordination bond in XSi[OCH2CH2]3N.
Collapse
Affiliation(s)
- Elena F. Belogolova
- A. E. Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences Favorsky
- Irkutsk 664033
- Russian Federation
| | - Evgeniya P. Doronina
- A. E. Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences Favorsky
- Irkutsk 664033
- Russian Federation
| | - Valery F. Sidorkin
- A. E. Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences Favorsky
- Irkutsk 664033
- Russian Federation
| |
Collapse
|
22
|
Holland DMP, Powis I, Trofimov AB, Menzies RC, Potts AW, Karlsson L, Badsyuk IL, Moskovskaya TE, Gromov EV, Schirmer J. An experimental and theoretical study of the valence shell photoelectron spectra of 2-chloropyridine and 3-chloropyridine. J Chem Phys 2017; 147:164307. [DOI: 10.1063/1.4999433] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- D. M. P. Holland
- Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD, United Kingdom
| | - I. Powis
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - A. B. Trofimov
- Laboratory of Quantum Chemistry, Irkutsk State University, Karl Marx Str. 1, 664003 Irkutsk, Russia
- Favorsky’s Institute of Chemistry, SB RAS, Favorsky Str. 1, 664033 Irkutsk, Russia
| | - R. C. Menzies
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - A. W. Potts
- Department of Physics, King’s College, Strand, London WC2R 2LS, United Kingdom
| | - L. Karlsson
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - I. L. Badsyuk
- Laboratory of Quantum Chemistry, Irkutsk State University, Karl Marx Str. 1, 664003 Irkutsk, Russia
| | - T. E. Moskovskaya
- Laboratory of Quantum Chemistry, Irkutsk State University, Karl Marx Str. 1, 664003 Irkutsk, Russia
| | - E. V. Gromov
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| | - J. Schirmer
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| |
Collapse
|