1
|
Ryazanov VV. Application of boundary functionals of random processes in statistical physics. Phys Rev E 2025; 111:024115. [PMID: 40103094 DOI: 10.1103/physreve.111.024115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/15/2025] [Indexed: 03/20/2025]
Abstract
The potential applications of boundary functionals of random processes, such as the extreme values of these processes, the moment of first reaching a fixed level, the value of the process at the moment of reaching the level, the moment of reaching extreme values, the time the process stays above a fixed level, and other functionals, are considered for the description of physical, chemical, and biological problems. Definitions of these functionals are provided, and characteristic functions are presented for the model with an exponential distribution of incoming demands. A generalization of these limitations is also considered. The potential uses of boundary functionals are demonstrated through examples such as a unicyclic network with affinity A, an asymmetric random walk, nonlinear diffusion, two-level model, Brownian motion, and multiple diffusing particles with reversible target-binding kinetics.
Collapse
Affiliation(s)
- V V Ryazanov
- Institute for Nuclear Research, pr. Nauki, 47 Kiev, Ukraine
| |
Collapse
|
2
|
Scher Y, Kumar A, Santhanam MS, Reuveni S. Continuous gated first-passage processes. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:108101. [PMID: 39208840 DOI: 10.1088/1361-6633/ad7530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Gated first-passage processes, where completion depends on both hitting a target and satisfying additional constraints, are prevalent across various fields. Despite their significance, analytical solutions to basic problems remain unknown, e.g. the detection time of a diffusing particle by a gated interval, disk, or sphere. In this paper, we elucidate the challenges posed by continuous gated first-passage processes and present a renewal framework to overcome them. This framework offers a unified approach for a wide range of problems, including those with single-point, half-line, and interval targets. The latter have so far evaded exact solutions. Our analysis reveals that solutions to gated problems can be obtained directly from the ungated dynamics. This, in turn, reveals universal properties and asymptotic behaviors, shedding light on cryptic intermediate-time regimes and refining the notion of high-crypticity for continuous-space gated processes. Moreover, we extend our formalism to higher dimensions, showcasing its versatility and applicability. Overall, this work provides valuable insights into the dynamics of continuous gated first-passage processes and offers analytical tools for studying them across diverse domains.
Collapse
Affiliation(s)
- Yuval Scher
- School of Chemistry, Center for the Physics & Chemistry of Living Systems, Ratner Institute for Single Molecule Chemistry, and the Sackler Center for Computational Molecular & Materials Science, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Aanjaneya Kumar
- Department of Physics, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India
| | - M S Santhanam
- Department of Physics, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India
| | - Shlomi Reuveni
- School of Chemistry, Center for the Physics & Chemistry of Living Systems, Ratner Institute for Single Molecule Chemistry, and the Sackler Center for Computational Molecular & Materials Science, Tel Aviv University, 6997801 Tel Aviv, Israel
| |
Collapse
|
3
|
Campos D, Méndez V. Dynamic redundancy as a mechanism to optimize collective random searches. Phys Rev E 2024; 109:064109. [PMID: 39021000 DOI: 10.1103/physreve.109.064109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/29/2024] [Indexed: 07/20/2024]
Abstract
We explore the case of a group of random walkers looking for a target randomly located in space, such that the number of walkers is not constant but new ones can join the search, or those that are active can abandon it, with constant rates r_{b} and r_{d}, respectively. Exact analytical solutions are provided both for the fastest-first-passage time and for the collective time cost required to reach the target, for the exemplifying case of Brownian walkers with r_{d}=0. We prove that even for such a simple situation there exists an optimal rate r_{b} at which walkers should join the search to minimize the collective search costs. We discuss how these results open a new line to understand the optimal regulation in searches conducted through multiparticle random walks, e.g., in chemical or biological processes.
Collapse
|
4
|
Scher Y, Lauber Bonomo O, Pal A, Reuveni S. Microscopic theory of adsorption kinetics. J Chem Phys 2023; 158:094107. [PMID: 36889971 DOI: 10.1063/5.0121359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Adsorption is the accumulation of a solute at an interface that is formed between a solution and an additional gas, liquid, or solid phase. The macroscopic theory of adsorption dates back more than a century and is now well-established. Yet, despite recent advancements, a detailed and self-contained theory of single-particle adsorption is still lacking. Here, we bridge this gap by developing a microscopic theory of adsorption kinetics, from which the macroscopic properties follow directly. One of our central achievements is the derivation of the microscopic version of the seminal Ward-Tordai relation, which connects the surface and subsurface adsorbate concentrations via a universal equation that holds for arbitrary adsorption dynamics. Furthermore, we present a microscopic interpretation of the Ward-Tordai relation that, in turn, allows us to generalize it to arbitrary dimension, geometry, and initial conditions. The power of our approach is showcased on a set of hitherto unsolved adsorption problems to which we present exact analytical solutions. The framework developed herein sheds fresh light on the fundamentals of adsorption kinetics, which opens new research avenues in surface science with applications to artificial and biological sensing and to the design of nano-scale devices.
Collapse
Affiliation(s)
- Yuval Scher
- School of Chemistry, Center for the Physics and Chemistry of Living Systems, Ratner Institute for Single Molecule Chemistry, and the Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Ofek Lauber Bonomo
- School of Chemistry, Center for the Physics and Chemistry of Living Systems, Ratner Institute for Single Molecule Chemistry, and the Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Arnab Pal
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
| | - Shlomi Reuveni
- School of Chemistry, Center for the Physics and Chemistry of Living Systems, Ratner Institute for Single Molecule Chemistry, and the Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, 6997801 Tel Aviv, Israel
| |
Collapse
|
5
|
Sensale S, Sharma P, Arya G. Binding kinetics of harmonically confined random walkers. Phys Rev E 2022; 105:044136. [PMID: 35590574 DOI: 10.1103/physreve.105.044136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Diffusion-mediated binding of molecules under the influence of discrete spatially confining potentials is a commonly encountered scenario in systems subjected to explicit fields or implicit fields arising from tethering restraints. Here, we derive analytical expressions for the mean binding time of two random walkers geometrically confined by means of two harmonic potentials in one- and two-dimensional systems, which show excellent agreement with Brownian dynamics simulations. As a demonstration of its utility, we use this theory to maximize the communication speed in existing DNA walkers, obtaining quantitative agreement with previously reported experimental findings. The analytical expressions derived in this paper are broadly applicable to diverse systems, providing ways to characterize communication processes and optimize the rate of signal propagation for sensing and computing applications at the nanoscale.
Collapse
Affiliation(s)
- Sebastian Sensale
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
| | - Pranav Sharma
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
| | - Gaurav Arya
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
6
|
Grebenkov DS, Kumar A. Reversible target-binding kinetics of multiple impatient particles. J Chem Phys 2022; 156:084107. [DOI: 10.1063/5.0083849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Certain biochemical reactions can only be triggered after binding a sufficient number of particles to a specific target region such as an enzyme or a protein sensor. We investigate the distribution of the reaction time, i.e., the first instance when all independently diffusing particles are bound to the target. When each particle binds irreversibly, this is equivalent to the first-passage time of the slowest (last) particle. In turn, reversible binding to the target renders the problem much more challenging and drastically changes the distribution of the reaction time. We derive the exact solution of this problem and investigate the short-time and long-time asymptotic behaviors of the reaction time probability density. We also analyze how the mean reaction time depends on the unbinding rate and the number of particles. Our exact and asymptotic solutions are compared to Monte Carlo simulations.
Collapse
Affiliation(s)
- Denis S. Grebenkov
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS–Ecole Polytechnique, IP Paris, 91120 Palaiseau, France
| | - Aanjaneya Kumar
- Department of Physics, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
7
|
Kumar A, Zodage A, Santhanam MS. First detection of threshold crossing events under intermittent sensing. Phys Rev E 2021; 104:L052103. [PMID: 34942787 DOI: 10.1103/physreve.104.l052103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022]
Abstract
The time taken by a random variable to cross a threshold for the first time, known as the first passage time, is of interest in many areas of sciences and engineering. Conventionally, there is an implicit assumption that the notional "sensor" monitoring the threshold crossing event is always active. In many realistic scenarios, the sensor monitoring the stochastic process works intermittently. Then, the relevant quantity of interest is the first detection time, which denotes the time when the sensor detects the random variable to be above the threshold for the first time. In this Letter, a birth-death process monitored by a random intermittent sensor is studied for which the first detection time distribution is obtained. In general, it is shown that the first detection time is related to and is obtainable from the first passage time distribution. Our analytical results display an excellent agreement with simulations. Furthermore, this framework is demonstrated in several applications-the susceptible infected susceptible compartmental and logistic models and birth-death processes with resetting. Finally, we solve the practically relevant problem of inferring the first passage time distribution from the first detection time.
Collapse
Affiliation(s)
- Aanjaneya Kumar
- Department of Physics, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| | - Aniket Zodage
- Department of Physics, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| | - M S Santhanam
- Department of Physics, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
8
|
Reva M, DiGregorio DA, Grebenkov DS. A first-passage approach to diffusion-influenced reversible binding and its insights into nanoscale signaling at the presynapse. Sci Rep 2021; 11:5377. [PMID: 33686123 PMCID: PMC7940439 DOI: 10.1038/s41598-021-84340-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 01/04/2021] [Indexed: 11/21/2022] Open
Abstract
Synaptic transmission between neurons is governed by a cascade of stochastic calcium ion reaction–diffusion events within nerve terminals leading to vesicular release of neurotransmitter. Since experimental measurements of such systems are challenging due to their nanometer and sub-millisecond scale, numerical simulations remain the principal tool for studying calcium-dependent neurotransmitter release driven by electrical impulses, despite the limitations of time-consuming calculations. In this paper, we develop an analytical solution to rapidly explore dynamical stochastic reaction–diffusion problems based on first-passage times. This is the first analytical model that accounts simultaneously for relevant statistical features of calcium ion diffusion, buffering, and its binding/unbinding reaction with a calcium sensor for synaptic vesicle fusion. In particular, unbinding kinetics are shown to have a major impact on submillisecond sensor occupancy probability and therefore cannot be neglected. Using Monte Carlo simulations we validated our analytical solution for instantaneous calcium influx and that through voltage-gated calcium channels. We present a fast and rigorous analytical tool that permits a systematic exploration of the influence of various biophysical parameters on molecular interactions within cells, and which can serve as a building block for more general cell signaling simulators.
Collapse
Affiliation(s)
- Maria Reva
- Unit of Synapse and Circuit Dynamics, CNRS UMR 3571, Institut Pasteur, Paris, France.,ED3C, Sorbonne University, Paris, France
| | - David A DiGregorio
- Unit of Synapse and Circuit Dynamics, CNRS UMR 3571, Institut Pasteur, Paris, France.
| | - Denis S Grebenkov
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS - Ecole Polytechnique, IP Paris, 91128, Palaiseau, France.
| |
Collapse
|
9
|
Wu H, Sarfati R, Wang D, Schwartz DK. Electrostatic Barriers to Nanoparticle Accessibility of a Porous Matrix. J Am Chem Soc 2020; 142:4696-4704. [DOI: 10.1021/jacs.9b12096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Haichao Wu
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Raphaël Sarfati
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Dapeng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Daniel K. Schwartz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
10
|
Grebenkov DS. Reversible reactions controlled by surface diffusion on a sphere. J Chem Phys 2019; 151:154103. [PMID: 31640367 DOI: 10.1063/1.5119969] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Denis S. Grebenkov
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS – Ecole Polytechnique, IP Paris, 91128 Palaiseau, France
| |
Collapse
|
11
|
Shin J, Kolomeisky AB. Target search on DNA by interacting molecules: First-passage approach. J Chem Phys 2019; 151:125101. [PMID: 31575173 DOI: 10.1063/1.5123988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gene regulation is one of the most important fundamental biological processes in living cells. It involves multiple protein molecules that locate specific sites on DNA and assemble gene initiation or gene repression multimolecular complexes. While the protein search dynamics for DNA targets has been intensively investigated, the role of intermolecular interactions during the genetic activation or repression remains not well quantified. Here, we present a simple one-dimensional model of target search for two interacting molecules that can reversibly form a dimer molecular complex, which also participates in the search process. In addition, the proteins have finite residence times on specific target sites, and the gene is activated or repressed when both proteins are simultaneously present at the target. The model is analyzed using first-passage analytical calculations and Monte Carlo computer simulations. It is shown that the search dynamics exhibit a complex behavior depending on the strength of intermolecular interactions and on the target residence times. We also found that the search time shows a nonmonotonic behavior as a function of the dissociation rate for the molecular complex. Physical-chemical arguments to explain these observations are presented. Our theoretical approach highlights the importance of molecular interactions in the complex process of gene activation/repression by multiple transcription factor proteins.
Collapse
Affiliation(s)
- Jaeoh Shin
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| | | |
Collapse
|
12
|
Grebenkov DS. Spectral theory of imperfect diffusion-controlled reactions on heterogeneous catalytic surfaces. J Chem Phys 2019; 151:104108. [DOI: 10.1063/1.5115030] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Denis S. Grebenkov
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS – Ecole Polytechnique, IP Paris, 91128 Palaiseau, France
| |
Collapse
|
13
|
Lawley SD, Madrid JB. First passage time distribution of multiple impatient particles with reversible binding. J Chem Phys 2019; 150:214113. [DOI: 10.1063/1.5098312] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- S. D. Lawley
- Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, USA
| | - J. B. Madrid
- Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
14
|
Kar P, Cherstvy AG, Metzler R. Acceleration of bursty multiprotein target search kinetics on DNA by colocalisation. Phys Chem Chem Phys 2018; 20:7931-7946. [DOI: 10.1039/c7cp06922g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Proteins are capable of locating specific targets on DNA by employing a facilitated diffusion process with intermittent 1D and 3D search steps. We here uncover the implications of colocalisation of protein production and DNA binding sites via computer simulations.
Collapse
Affiliation(s)
- Prathitha Kar
- Dept of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bengaluru
- India
- Institute for Physics & Astronomy
| | - Andrey G. Cherstvy
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| | - Ralf Metzler
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| |
Collapse
|