1
|
Goswami S, Jensen S, Yang Y, Holzmann M, Pierleoni C, Ceperley DM. High temperature melting of dense molecular hydrogen from machine-learning interatomic potentials trained on quantum Monte Carlo. J Chem Phys 2025; 162:054118. [PMID: 39907135 DOI: 10.1063/5.0250686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/16/2025] [Indexed: 02/06/2025] Open
Abstract
We present results and discuss methods for computing the melting temperature of dense molecular hydrogen using a machine learned model trained on quantum Monte Carlo data. In this newly trained model, we emphasize the importance of accurate total energies in the training. We integrate a two phase method for estimating the melting temperature with estimates from the Clausius-Clapeyron relation to provide a more accurate melting curve from the model. We make detailed predictions of the melting temperature, solid and liquid volumes, latent heat, and internal energy from 50 to 180 GPa for both classical hydrogen and quantum hydrogen. At pressures of roughly 173 GPa and 1635 K, we observe molecular dissociation in the liquid phase. We compare with previous simulations and experimental measurements.
Collapse
Affiliation(s)
- Shubhang Goswami
- The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Scott Jensen
- The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yubo Yang
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA
- Department of Physics and Astronomy, Hofstra University, Hempstead, New York 11549, USA
| | | | - Carlo Pierleoni
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio 10, I-67010 L'Aquila, Italy
| | - David M Ceperley
- The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
2
|
Mouhat F, Peria M, Morresi T, Vuilleumier R, Saitta AM, Casula M. Thermal dependence of the hydrated proton and optimal proton transfer in the protonated water hexamer. Nat Commun 2023; 14:6930. [PMID: 37903819 PMCID: PMC10616126 DOI: 10.1038/s41467-023-42366-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 09/25/2023] [Indexed: 11/01/2023] Open
Abstract
Water is a key ingredient for life and plays a central role as solvent in many biochemical reactions. However, the intrinsically quantum nature of the hydrogen nucleus, revealing itself in a large variety of physical manifestations, including proton transfer, gives rise to unexpected phenomena whose description is still elusive. Here we study, by a combination of state-of-the-art quantum Monte Carlo methods and path-integral molecular dynamics, the structure and hydrogen-bond dynamics of the protonated water hexamer, the fundamental unit for the hydrated proton. We report a remarkably low thermal expansion of the hydrogen bond from zero temperature up to 300 K, owing to the presence of short-Zundel configurations, characterised by proton delocalisation and favoured by the synergy of nuclear quantum effects and thermal activation. The hydrogen bond strength progressively weakens above 300 K, when localised Eigen-like configurations become relevant. Our analysis, supported by the instanton statistics of shuttling protons, reveals that the near-room-temperature range from 250 K to 300 K is optimal for proton transfer in the protonated water hexamer.
Collapse
Affiliation(s)
- Félix Mouhat
- Saint Gobain Research Paris, 39, Quai Lucien Lefranc, 93300, Aubervilliers, France
| | - Matteo Peria
- IMPMC, Sorbonne Université, CNRS, MNHN, UMR 7590, 4 Place Jussieu, 75252, Paris, France
| | - Tommaso Morresi
- ECT*-Fondazione Bruno Kessler*, 286 Strada delle Tabarelle, 38123, Trento, Italy
| | - Rodolphe Vuilleumier
- PASTEUR, Département de Chimie, École normale supérieure, PSL Research University, Sorbonne Université, CNRS, 24 Rue Lhomond, 75005, Paris, France
| | - Antonino Marco Saitta
- IMPMC, Sorbonne Université, CNRS, MNHN, UMR 7590, 4 Place Jussieu, 75252, Paris, France
| | - Michele Casula
- IMPMC, Sorbonne Université, CNRS, MNHN, UMR 7590, 4 Place Jussieu, 75252, Paris, France.
| |
Collapse
|
3
|
Chen S, Zhang S. A structural optimization algorithm with stochastic forces and stresses. NATURE COMPUTATIONAL SCIENCE 2022; 2:736-744. [PMID: 38177372 DOI: 10.1038/s43588-022-00350-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/07/2022] [Indexed: 01/06/2024]
Abstract
We propose an algorithm for optimizations in which the gradients contain stochastic noise. This arises, for example, in structural optimizations when computations of forces and stresses rely on methods involving Monte Carlo sampling, such as quantum Monte Carlo or neural network states, or are performed on quantum devices that have intrinsic noise. Our proposed algorithm is based on the combination of two ingredients: an update rule derived from the steepest-descent method, and a staged scheduling of the targeted statistical error and step size, with position averaging. We compare it with commonly applied algorithms, including some of the latest machine learning optimization methods, and show that the algorithm consistently performs efficiently and robustly under realistic conditions. Applying this algorithm, we achieve full-degree optimizations in solids using ab initio many-body computations, by auxiliary-field quantum Monte Carlo with plane waves and pseudopotentials. A potential metastable structure in Si is discovered using density-functional calculations with synthetic noisy forces.
Collapse
Affiliation(s)
- Siyuan Chen
- Department of Physics, College of William & Mary, Williamsburg, VA, USA.
| | - Shiwei Zhang
- Center for Computational Quantum Physics, Flatiron Institute, New York, NY, USA
| |
Collapse
|
4
|
Robinson RS, Tiwari P, McMahon JM. Pseudo pair potential between protons in dense hydrogen from first principles. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2104178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Robbie S. Robinson
- Department of Physics and Astronomy, Washington State University, Pullman, WA, USA
| | - Praveer Tiwari
- Department of Physics and Astronomy, Washington State University, Pullman, WA, USA
| | - Jeffrey M. McMahon
- Department of Physics and Astronomy, Washington State University, Pullman, WA, USA
| |
Collapse
|
5
|
Boeri L, Hennig R, Hirschfeld P, Profeta G, Sanna A, Zurek E, Pickett WE, Amsler M, Dias R, Eremets MI, Heil C, Hemley RJ, Liu H, Ma Y, Pierleoni C, Kolmogorov AN, Rybin N, Novoselov D, Anisimov V, Oganov AR, Pickard CJ, Bi T, Arita R, Errea I, Pellegrini C, Requist R, Gross EKU, Margine ER, Xie SR, Quan Y, Hire A, Fanfarillo L, Stewart GR, Hamlin JJ, Stanev V, Gonnelli RS, Piatti E, Romanin D, Daghero D, Valenti R. The 2021 room-temperature superconductivity roadmap. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:183002. [PMID: 34544070 DOI: 10.1088/1361-648x/ac2864] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Designing materials with advanced functionalities is the main focus of contemporary solid-state physics and chemistry. Research efforts worldwide are funneled into a few high-end goals, one of the oldest, and most fascinating of which is the search for an ambient temperature superconductor (A-SC). The reason is clear: superconductivity at ambient conditions implies being able to handle, measure and access a single, coherent, macroscopic quantum mechanical state without the limitations associated with cryogenics and pressurization. This would not only open exciting avenues for fundamental research, but also pave the road for a wide range of technological applications, affecting strategic areas such as energy conservation and climate change. In this roadmap we have collected contributions from many of the main actors working on superconductivity, and asked them to share their personal viewpoint on the field. The hope is that this article will serve not only as an instantaneous picture of the status of research, but also as a true roadmap defining the main long-term theoretical and experimental challenges that lie ahead. Interestingly, although the current research in superconductor design is dominated by conventional (phonon-mediated) superconductors, there seems to be a widespread consensus that achieving A-SC may require different pairing mechanisms.In memoriam, to Neil Ashcroft, who inspired us all.
Collapse
Affiliation(s)
- Lilia Boeri
- Physics Department, Sapienza University and Enrico Fermi Research Center, Rome, Italy
| | - Richard Hennig
- Deparment of Material Science and Engineering and Quantum Theory Project, University of Florida, Gainesville 32611, United States of America
| | - Peter Hirschfeld
- Department of Physics, University of Florida, Gainesville, FL 32611, United States of America
| | | | - Antonio Sanna
- Max Planck Institute of Microstructure Physics, Halle, Germany
| | - Eva Zurek
- University at Buffalo, SUNY, United States of America
| | | | - Maximilian Amsler
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, United States of America
| | - Ranga Dias
- University of Rochester, United States of America
| | | | | | | | - Hanyu Liu
- Jilin University, People's Republic of China
| | - Yanming Ma
- Jilin University, People's Republic of China
| | - Carlo Pierleoni
- Department of Physics, University of Florida, Gainesville, FL 32611, United States of America
| | | | | | | | | | | | | | - Tiange Bi
- University at Buffalo, SUNY, United States of America
| | | | - Ion Errea
- University of the Basque Country, Spain
| | | | - Ryan Requist
- Max Planck Institute of Microstructure Physics, Halle, Germany
- Hebrew University of Jerusalem, Israel
| | - E K U Gross
- Max Planck Institute of Microstructure Physics, Halle, Germany
- Hebrew University of Jerusalem, Israel
| | | | - Stephen R Xie
- Department of Physics, University of Florida, Gainesville, FL 32611, United States of America
| | - Yundi Quan
- Department of Physics, University of Florida, Gainesville, FL 32611, United States of America
| | - Ajinkya Hire
- Department of Physics, University of Florida, Gainesville, FL 32611, United States of America
| | - Laura Fanfarillo
- Department of Physics, University of Florida, Gainesville, FL 32611, United States of America
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - G R Stewart
- Department of Physics, University of Florida, Gainesville, FL 32611, United States of America
| | - J J Hamlin
- Department of Physics, University of Florida, Gainesville, FL 32611, United States of America
| | | | | | | | | | | | | |
Collapse
|
6
|
Morresi T, Paulatto L, Vuilleumier R, Casula M. Probing anharmonic phonons by quantum correlators: A path integral approach. J Chem Phys 2021; 154:224108. [PMID: 34241203 DOI: 10.1063/5.0050450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We devise an efficient scheme to determine vibrational properties from Path Integral Molecular Dynamics (PIMD) simulations. The method is based on zero-time Kubo-transformed correlation functions and captures the anharmonicity of the potential due to both temperature and quantum effects. Using analytical derivations and numerical calculations on toy-model potentials, we show that two different estimators built upon PIMD correlation functions fully characterize the phonon spectra and the anharmonicity strength. The first estimator is associated with the force-force quantum correlators and, in the weak anharmonic regime, yields reliable zero-point motion frequencies and thermodynamic properties of the quantum system. The second one is instead connected to displacement-displacement correlators and accurately probes the lowest-energy phonon excitations, regardless of the anharmonicity strength of the system. We also prove that the use of generalized eigenvalue equations, in place of the standard normal mode equations, leads to a significant speed-up in the PIMD phonon calculations, both in terms of faster convergence rate and smaller time step bias. Within this framework, using ab initio PIMD simulations, we compute phonon dispersions of diamond and of the high-pressure I41/amd phase of atomic hydrogen. We find that in the latter case, the anharmonicity is stronger than previously estimated and yields a sizeable red-shift in the vibrational spectrum of atomic hydrogen.
Collapse
Affiliation(s)
- T Morresi
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS UMR 7590, MNHN, 4 Place Jussieu, 75252 Paris, France
| | - L Paulatto
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS UMR 7590, MNHN, 4 Place Jussieu, 75252 Paris, France
| | - R Vuilleumier
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - M Casula
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS UMR 7590, MNHN, 4 Place Jussieu, 75252 Paris, France
| |
Collapse
|
7
|
Fedorov DA, Otten MJ, Gray SK, Alexeev Y. Ab initio molecular dynamics on quantum computers. J Chem Phys 2021; 154:164103. [PMID: 33940828 DOI: 10.1063/5.0046930] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ab initio molecular dynamics (AIMD) is a valuable technique for studying molecules and materials at finite temperatures where the nuclei evolve on potential energy surfaces obtained from accurate electronic structure calculations. In this work, we present an approach to running AIMD simulations on noisy intermediate-scale quantum (NISQ)-era quantum computers. The electronic energies are calculated on a quantum computer using the variational quantum eigensolver (VQE) method. Algorithms for computation of analytical gradients entirely on a quantum computer require quantum fault-tolerant hardware, which is beyond NISQ-era. Therefore, we compute the energy gradients numerically using finite differences, the Hellmann-Feynman theorem, and a correlated sampling technique. This method only requires additional classical calculations of electron integrals for each degree of freedom without any additional computations on a quantum computer beyond the initial VQE run. As a proof of concept, AIMD simulations are demonstrated for the H2 molecule on IBM quantum devices. In addition, we demonstrate the validity of the method for larger molecules using full configuration interaction wave functions. As quantum hardware and noise mitigation techniques continue to improve, the method can be utilized for studying larger molecular systems.
Collapse
Affiliation(s)
- Dmitry A Fedorov
- Oak Ridge Associated Universities, 100 Orau Way, Oak Ridge, Tennessee 37830, USA
| | - Matthew J Otten
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Stephen K Gray
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Yuri Alexeev
- Computational Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| |
Collapse
|
8
|
Silvera IF, Dias R. Phases of the hydrogen isotopes under pressure: metallic hydrogen. ADVANCES IN PHYSICS: X 2021. [DOI: 10.1080/23746149.2021.1961607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
| | - Ranga Dias
- Department of Physics and Astronomy and Mechanical Engineering, University of Rochester, Rochester, USA
| |
Collapse
|
9
|
Gorelov V, Ceperley DM, Holzmann M, Pierleoni C. Electronic structure and optical properties of quantum crystals from first principles calculations in the Born–Oppenheimer approximation. J Chem Phys 2020; 153:234117. [DOI: 10.1063/5.0031843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Vitaly Gorelov
- Maison de la Simulation, CEA, CNRS, Univ. Paris-Sud, UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - David M. Ceperley
- Department of Physics, University of Illinois, Urbana, Illinois 61801, USA
| | - Markus Holzmann
- Univ. Grenoble Alpes, CNRS, LPMMC, 3800 Grenoble, France
- Institut Laue Langevin, BP 156, F-38042 Grenoble Cedex 9, France
| | - Carlo Pierleoni
- Maison de la Simulation, CEA, CNRS, Univ. Paris-Sud, UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
- Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio 10, I-67010 L’Aquila, Italy
| |
Collapse
|
10
|
Real Space Triplets in Quantum Condensed Matter: Numerical Experiments Using Path Integrals, Closures, and Hard Spheres. ENTROPY 2020; 22:e22121338. [PMID: 33266522 PMCID: PMC7759805 DOI: 10.3390/e22121338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 11/17/2022]
Abstract
Path integral Monte Carlo and closure computations are utilized to study real space triplet correlations in the quantum hard-sphere system. The conditions cover from the normal fluid phase to the solid phases face-centered cubic (FCC) and cI16 (de Broglie wavelengths , densities ). The focus is on the equilateral and isosceles features of the path-integral centroid and instantaneous structures. Complementary calculations of the associated pair structures are also carried out to strengthen structural identifications and facilitate closure evaluations. The three closures employed are Kirkwood superposition, Jackson-Feenberg convolution, and their average (AV3). A large quantity of new data are reported, and conclusions are drawn regarding (i) the remarkable performance of AV3 for the centroid and instantaneous correlations, (ii) the correspondences between the fluid and FCC salient features on the coexistence line, and (iii) the most conspicuous differences between FCC and cI16 at the pair and the triplet levels at moderately high densities (. This research is expected to provide low-temperature insights useful for the future related studies of properties of real systems (e.g., helium, alkali metals, and general colloidal systems).
Collapse
|
11
|
Characterization of molecular-atomic transformation in fluid hydrogen under pressure via long-wavelength asymptote of charge density fluctuations. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Gorelov V, Holzmann M, Ceperley DM, Pierleoni C. Energy Gap Closure of Crystalline Molecular Hydrogen with Pressure. PHYSICAL REVIEW LETTERS 2020; 124:116401. [PMID: 32242714 DOI: 10.1103/physrevlett.124.116401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/13/2020] [Indexed: 06/11/2023]
Abstract
We study the gap closure with pressure of crystalline molecular hydrogen. The gaps are obtained from grand-canonical quantum Monte Carlo methods properly extended to quantum and thermal crystals, simulated by coupled electron ion Monte Carlo methods. Nuclear zero point effects cause a large reduction in the gap (∼2 eV). Depending on the structure, the fundamental indirect gap closes between 380 and 530 GPa for ideal crystals and 330-380 GPa for quantum crystals. Beyond this pressure the system enters into a bad metal phase where the density of states at the Fermi level increases with pressure up to ∼450-500 GPa when the direct gap closes. Our work partially supports the interpretation of recent experiments in high pressure hydrogen.
Collapse
Affiliation(s)
- Vitaly Gorelov
- Université Paris-Saclay, UVSQ, CNRS, CEA, Maison de la Simulation, 91191, Gif-sur-Yvette, France
| | - Markus Holzmann
- Univ. Grenoble Alpes, CNRS, LPMMC, 38000 Grenoble, France
- Institut Laue-Langevin, BP 156, F-38042 Grenoble Cedex 9, France
| | - David M Ceperley
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Carlo Pierleoni
- Université Paris-Saclay, UVSQ, CNRS, CEA, Maison de la Simulation, 91191, Gif-sur-Yvette, France
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio 10, I-67010 L'Aquila, Italy
| |
Collapse
|
13
|
Chen D, Cui TT, Gao W, Jiang Q. Distinguishing the Structure of High-Pressure Hydrogen with Dielectric Constants. J Phys Chem Lett 2020; 11:664-669. [PMID: 31902208 DOI: 10.1021/acs.jpclett.9b03415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Identifying the structures of high-pressure hydrogen has been one of the central goals in high-pressure physics; however, it still presents a fundamental challenge because of the lack of an effective measure for distinguishing the structures. Herein, we address this issue by focusing on the potential candidates of phases II and III of high-pressure hydrogen. We find that the anisotropic dielectric constants of the different hydrogen solids and their responses to pressure behave differently depending on the atomic structures, corresponding to the different polarization responses of the structures to the external electric field. These findings are robust regardless of the quantum and thermal motion of hydrogen solids. Therefore, the anisotropic dielectric property can serve as a potential measure for probing the structures of high-pressure hydrogen as well as other high-pressure materials.
Collapse
Affiliation(s)
- Da Chen
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering , Jilin University , Changchun 130022 , China
| | - Ting Ting Cui
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering , Jilin University , Changchun 130022 , China
| | - Wang Gao
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering , Jilin University , Changchun 130022 , China
| | - Qing Jiang
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering , Jilin University , Changchun 130022 , China
| |
Collapse
|
14
|
Monserrat B, Ashbrook SE, Pickard CJ. Nuclear Magnetic Resonance Spectroscopy as a Dynamical Structural Probe of Hydrogen under High Pressure. PHYSICAL REVIEW LETTERS 2019; 122:135501. [PMID: 31012613 DOI: 10.1103/physrevlett.122.135501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Indexed: 06/09/2023]
Abstract
An unambiguous crystallographic structure solution for the observed phases II-VI of high pressure hydrogen does not exist due to the failure of standard structural probes at extreme pressure. In this work we propose that nuclear magnetic resonance spectroscopy provides a complementary structural probe for high pressure hydrogen. We show that the best structural models available for phases II, III, and IV of high pressure hydrogen exhibit markedly distinct nuclear magnetic resonance spectra which could therefore be used to discriminate amongst them. As an example, we demonstrate how nuclear magnetic resonance spectroscopy could be used to establish whether phase III exhibits polymorphism. Our calculations also reveal a strong renormalization of the nuclear magnetic resonance response in hydrogen arising from quantum fluctuations, as well as a strong isotope effect. As the experimental techniques develop, nuclear magnetic resonance spectroscopy can be expected to become a useful complementary structural probe in high pressure experiments.
Collapse
Affiliation(s)
- Bartomeu Monserrat
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Sharon E Ashbrook
- School of Chemistry, EaStCHEM and Centre of Magnetic Resonance, University of St. Andrews, St. Andrews KY16 9ST, United Kingdom
| | - Chris J Pickard
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
- Advanced Institute for Materials Research, Tohoku University 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan
| |
Collapse
|
15
|
Pierleoni C, Rillo G, Ceperley DM, Holzmann M. Electron localization properties in high pressure hydrogen at the liquid-liquid phase transition by Coupled Electron-Ion Monte Carlo. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1742-6596/1136/1/012005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
16
|
Sesé LM. Computation of static quantum triplet structure factors of liquid para-hydrogen. J Chem Phys 2018; 149:124507. [PMID: 30278655 DOI: 10.1063/1.5048929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The instantaneous and centroid triplet structure factors, S ( 3 ) ( k 1 , k 2 ) , of liquid (one-center) para-hydrogen are computed on the crystallization line for temperatures T/K ≤ 33. The focus is on salient equilateral and isosceles features, and the methods utilized are path integral Monte Carlo (PIMC) simulations and Ornstein-Zernike (OZ) integral equations, which involve Jackson-Feenberg convolution (JF3) and other distinct closures. Long path integral simulation runs are carried out in the canonical ensemble, so as to obtain sufficiently accurate direct PI triplet results. Conclusions are drawn regarding general triplet structure features and the role and usefulness of the OZ closures. The equilateral features are studied in more detail, and one finds that (a) PIMC results point to the existence of regularity in the centroid main peak amplitudes; (b) some of the studied closures give qualitative descriptions for wave numbers below k ≈ 1 Å-1, but they all fail to describe the main peak amplitude regions (1.75 < k/Å-1 < 2.5); and (c) JF3 plays the role of a limit closure that is valid for increasing wave numbers (k ≥ 2.6 Å-1). In addition, representative isosceles PI features turn out to be reasonably bounded (within Δk = 0.1 Å-1) by those of some closures.
Collapse
Affiliation(s)
- Luis M Sesé
- Departamento de Ciencias y Técnicas Fisicoquímicas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Paseo de la Senda del Rey 9, 28040 Madrid, Spain
| |
Collapse
|
17
|
Bakr MA, Lee S. A Framework of Covariance Projection on Constraint Manifold for Data Fusion. SENSORS (BASEL, SWITZERLAND) 2018; 18:E1610. [PMID: 29772850 PMCID: PMC5981452 DOI: 10.3390/s18051610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 11/17/2022]
Abstract
A general framework of data fusion is presented based on projecting the probability distribution of true states and measurements around the predicted states and actual measurements onto the constraint manifold. The constraint manifold represents the constraints to be satisfied among true states and measurements, which is defined in the extended space with all the redundant sources of data such as state predictions and measurements considered as independent variables. By the general framework, we mean that it is able to fuse any correlated data sources while directly incorporating constraints and identifying inconsistent data without any prior information. The proposed method, referred to here as the Covariance Projection (CP) method, provides an unbiased and optimal solution in the sense of minimum mean square error (MMSE), if the projection is based on the minimum weighted distance on the constraint manifold. The proposed method not only offers a generalization of the conventional formula for handling constraints and data inconsistency, but also provides a new insight into data fusion in terms of a geometric-algebraic point of view. Simulation results are provided to show the effectiveness of the proposed method in handling constraints and data inconsistency.
Collapse
Affiliation(s)
- Muhammad Abu Bakr
- Intelligent Systems Research Institute, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, Korea.
| | - Sukhan Lee
- Intelligent Systems Research Institute, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, Korea.
| |
Collapse
|
18
|
Tuckerman M, Ceperley D. Preface: Special Topic on Nuclear Quantum Effects. J Chem Phys 2018; 148:102001. [DOI: 10.1063/1.5026714] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Mark Tuckerman
- Department of Chemistry, New York University, New York, New York 10003, USA
- Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, USA
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - David Ceperley
- Department of Physics, University of Illinois Urbana-Champaign, Champaign, Illinois 61801, USA
| |
Collapse
|
19
|
Mei Z, An Q, Zhao FQ, Xu SY, Ju XH. Reactive molecular dynamics simulation of thermal decomposition for nano-aluminized explosives. Phys Chem Chem Phys 2018; 20:29341-29350. [DOI: 10.1039/c8cp05006f] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The catalytic effect of nano-Al particles on thermal decomposition of RDX, reducing the onset temperature of generating H2O and CO2 (ΔTo < 0).
Collapse
Affiliation(s)
- Zheng Mei
- Key Laboratory of Soft Chemistry and Functional Materials of MOE
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P. R. China
| | - Qi An
- Department of Chemical and Materials Engineering
- University of Nevada Reno
- Reno
- USA
| | - Feng-Qi Zhao
- Laboratory of Science and Technology on Combustion and Explosion
- Xi’an Modern Chemistry Research Institute
- Xi’an 710065
- P. R. China
| | - Si-Yu Xu
- Laboratory of Science and Technology on Combustion and Explosion
- Xi’an Modern Chemistry Research Institute
- Xi’an 710065
- P. R. China
| | - Xue-Hai Ju
- Key Laboratory of Soft Chemistry and Functional Materials of MOE
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P. R. China
| |
Collapse
|