1
|
Jonas H, Schall P, Bolhuis PG. Extended Wertheim theory predicts the anomalous chain length distributions of divalent patchy particles under extreme confinement. J Chem Phys 2022; 157:094903. [DOI: 10.1063/5.0098882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Colloidal patchy particles with divalent attractive interaction can self-assemble into linear polymer chains. Their equilibrium properties in 2D and 3D are well described by Wertheim's thermodynamic perturbation theory which predicts a well-defined exponentially decaying equilibrium chain length distribution. In experi- mental realizations, due to gravity, particles sediment to the bottom of the suspension forming a monolayer of particles with a gravitational height smaller than the particle diameter. In accordance with experiments, an anomalously high monomer concentration is observed in simulations which is not well understood. To account for this observation, we interpret the polymerization as taking place in a highly confined quasi-2D plane and extend the Wertheim thermodynamic perturbation theory by defining addition reactions constants as functions of the chain length. We derive the theory, test it on simple square well potentials, and apply it to the experimental case of synthetic colloidal patchy particles immersed in a binary liquid mixture that are described by an accurate effective critical Casimir patchy particle potential. The important interaction parameters entering the theory are explicitly computed using the integral method in combination with Monte Carlo sampling. Without any adjustable parameter, the predictions of the chain length distribution are in excellent agreement with explicit simulations of self-assembling particles. We discuss generality of the approach, and its application range.
Collapse
Affiliation(s)
- Hannah Jonas
- University of Amsterdam Van 't Hoff Institute for Molecular Sciences, Netherlands
| | - Peter Schall
- Institute of Physics, Universiteit van Amsterdam Faculteit der Natuurwetenschappen Wiskunde en Informatica, Netherlands
| | - Peter G. Bolhuis
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam Van 't Hoff Institute for Molecular Sciences, Netherlands
| |
Collapse
|
2
|
Krishnamurthy S, Mathews Kalapurakal RA, Mani E. Computer simulations of self-assembly of anisotropic colloids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:273001. [PMID: 35172296 DOI: 10.1088/1361-648x/ac55d6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Computer simulations have played a significant role in understanding the physics of colloidal self-assembly, interpreting experimental observations, and predicting novel mesoscopic and crystalline structures. Recent advances in computer simulations of colloidal self-assembly driven by anisotropic or orientation-dependent inter-particle interactions are highlighted in this review. These interactions are broadly classified into two classes: entropic and enthalpic interactions. They mainly arise due to shape anisotropy, surface heterogeneity, compositional heterogeneity, external field, interfaces, and confinements. Key challenges and opportunities in the field are discussed.
Collapse
Affiliation(s)
- Sriram Krishnamurthy
- Polymer Engineering and Colloids Science Laboratory, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai-600036, India
| | - Remya Ann Mathews Kalapurakal
- Polymer Engineering and Colloids Science Laboratory, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai-600036, India
| | - Ethayaraja Mani
- Polymer Engineering and Colloids Science Laboratory, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai-600036, India
| |
Collapse
|
3
|
Jonas HJ, Stuij SG, Schall P, Bolhuis PG. A temperature-dependent critical Casimir patchy particle model benchmarked onto experiment. J Chem Phys 2021; 155:034902. [PMID: 34293902 DOI: 10.1063/5.0055012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Synthetic colloidal patchy particles immersed in a binary liquid mixture can self-assemble via critical Casimir interactions into various superstructures, such as chains and networks. Up to now, there are no quantitatively accurate potential models that can simulate and predict this experimentally observed behavior precisely. Here, we develop a protocol to establish such a model based on a combination of theoretical Casimir potentials and angular switching functions. Using Monte Carlo simulations, we optimize several material-specific parameters in the model to match the experimental chain length distribution and persistence length. Our approach gives a systematic way to obtain accurate potentials for critical Casimir induced patchy particle interactions and can be used in large-scale simulations.
Collapse
Affiliation(s)
- H J Jonas
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - S G Stuij
- Institute of Physics, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - P Schall
- Institute of Physics, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - P G Bolhuis
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| |
Collapse
|
4
|
Swinkels PJM, Stuij SG, Gong Z, Jonas H, Ruffino N, Linden BVD, Bolhuis PG, Sacanna S, Woutersen S, Schall P. Revealing pseudorotation and ring-opening reactions in colloidal organic molecules. Nat Commun 2021; 12:2810. [PMID: 33990609 PMCID: PMC8121934 DOI: 10.1038/s41467-021-23144-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/12/2021] [Indexed: 11/16/2022] Open
Abstract
Colloids have a rich history of being used as 'big atoms' mimicking real atoms to study crystallization, gelation and the glass transition of condensed matter. Emulating the dynamics of molecules, however, has remained elusive. Recent advances in colloid chemistry allow patchy particles to be synthesized with accurate control over shape, functionality and coordination number. Here, we show that colloidal alkanes, specifically colloidal cyclopentane, assembled from tetrameric patchy particles by critical Casimir forces undergo the same chemical transformations as their atomic counterparts, allowing their dynamics to be studied in real time. We directly observe transitions between chair and twist conformations in colloidal cyclopentane, and we elucidate the interplay of bond bending strain and entropy in the molecular transition states and ring-opening reactions. These results open the door to investigate complex molecular kinetics and molecular reactions in the high-temperature classical limit, in which the colloidal analogue becomes a good model.
Collapse
Affiliation(s)
- P J M Swinkels
- Institute of Physics, University of Amsterdam, Amsterdam, The Netherlands
| | - S G Stuij
- Institute of Physics, University of Amsterdam, Amsterdam, The Netherlands
| | - Z Gong
- Molecular Design Institute, Department of Chemistry, New York University, New York, NY, USA
| | - H Jonas
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - N Ruffino
- Institute of Physics, University of Amsterdam, Amsterdam, The Netherlands
| | - B van der Linden
- Institute of Physics, University of Amsterdam, Amsterdam, The Netherlands
| | - P G Bolhuis
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - S Sacanna
- Molecular Design Institute, Department of Chemistry, New York University, New York, NY, USA
| | - S Woutersen
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - P Schall
- Institute of Physics, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Bolhuis PG, Swenson DWH. Transition Path Sampling as Markov Chain Monte Carlo of Trajectories: Recent Algorithms, Software, Applications, and Future Outlook. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202000237] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Peter G. Bolhuis
- Amsterdam Center for Multiscale Modeling van 't Hoff Institute for Molecular Sciences University of Amsterdam PO Box 94157 1090 GD Amsterdam The Netherlands
| | - David W. H. Swenson
- Centre Blaise Pascal Ecole Normale Superieure 46, allée d'Italie 69364 Lyon Cedex 07 France
| |
Collapse
|
6
|
Brotzakis ZF, Bolhuis PG. Unbiased Atomistic Insight into the Mechanisms and Solvent Role for Globular Protein Dimer Dissociation. J Phys Chem B 2019; 123:1883-1895. [PMID: 30714378 PMCID: PMC6581425 DOI: 10.1021/acs.jpcb.8b10005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/30/2019] [Indexed: 12/18/2022]
Abstract
Association and dissociation of proteins are fundamental processes in nature. Although simple to understand conceptually, the details of the underlying mechanisms and role of the solvent are poorly understood. Here, we investigate the dissociation of the hydrophilic β-lactoglobulin dimer by employing transition path sampling. Analysis of the sampled path ensembles reveals a variety of mechanisms: (1) a direct aligned dissociation (2) a hopping and rebinding transition followed by unbinding, and (3) a sliding transition before unbinding. Reaction coordinate and transition-state analysis predicts that, besides native contact and neighboring salt-bridge interactions, solvent degrees of freedom play an important role in the dissociation process. Bridging waters, hydrogen-bonded to both proteins, support contacts in the native state and nearby lying transition-state regions, whereas they exhibit faster dynamics in further lying transition-state regions, rendering the proteins more mobile and assisting in rebinding. Analysis of the structure and dynamics of the solvent molecules reveals that the dry native interface induces enhanced populations of both disordered hydration water near hydrophilic residues and tetrahedrally ordered hydration water nearby hydrophobic residues. Although not exhaustive, our sampling of rare unbiased reactive molecular dynamics trajectories enhances the understanding of protein dissociation via complex pathways including (multiple) rebinding events.
Collapse
Affiliation(s)
| | - P. G. Bolhuis
- Van’t Hoff Institute
for Molecular Sciences, Universiteit van
Amsterdam, Science Park 904, 1090 GD Amsterdam, The Netherlands
| |
Collapse
|
7
|
Vijaykumar A, Ten Wolde PR, Bolhuis PG. Rate constants for proteins binding to substrates with multiple binding sites using a generalized forward flux sampling expression. J Chem Phys 2018; 148:124109. [PMID: 29604887 DOI: 10.1063/1.5012854] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To predict the response of a biochemical system, knowledge of the intrinsic and effective rate constants of proteins is crucial. The experimentally accessible effective rate constant for association can be decomposed in a diffusion-limited rate at which proteins come into contact and an intrinsic association rate at which the proteins in contact truly bind. Reversely, when dissociating, bound proteins first separate into a contact pair with an intrinsic dissociation rate, before moving away by diffusion. While microscopic expressions exist that enable the calculation of the intrinsic and effective rate constants by conducting a single rare event simulation of the protein dissociation reaction, these expressions are only valid when the substrate has just one binding site. If the substrate has multiple binding sites, a bound enzyme can, besides dissociating into the bulk, also hop to another binding site. Calculating transition rate constants between multiple states with forward flux sampling requires a generalized rate expression. We present this expression here and use it to derive explicit expressions for all intrinsic and effective rate constants involving binding to multiple states, including rebinding. We illustrate our approach by computing the intrinsic and effective association, dissociation, and hopping rate constants for a system in which a patchy particle model enzyme binds to a substrate with two binding sites. We find that these rate constants increase as a function of the rotational diffusion constant of the particles. The hopping rate constant decreases as a function of the distance between the binding sites. Finally, we find that blocking one of the binding sites enhances both association and dissociation rate constants. Our approach and results are important for understanding and modeling association reactions in enzyme-substrate systems and other patchy particle systems and open the way for large multiscale simulations of such systems.
Collapse
Affiliation(s)
- Adithya Vijaykumar
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | | | - Peter G Bolhuis
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| |
Collapse
|
8
|
Newton AC, Groenewold J, Kegel WK, Bolhuis PG. The role of multivalency in the association kinetics of patchy particle complexes. J Chem Phys 2018. [PMID: 28641424 DOI: 10.1063/1.4984966] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Association and dissociation of particles are elementary steps in many natural and technological relevant processes. For many such processes, the presence of multiple binding sites is essential. For instance, protein complexes and regular structures such as virus shells are formed from elementary building blocks with multiple binding sites. Here we address a fundamental question concerning the role of multivalency of binding sites in the association kinetics of such complexes. Using single replica transition interface sampling simulations, we investigate the influence of the multivalency on the binding kinetics and the association mechanism of patchy particles that form polyhedral clusters. When the individual bond strength is fixed, the kinetics naturally is very dependent on the multivalency, with dissociation rate constants exponentially decreasing with the number of bonds. In contrast, we find that when the total bond energy per particle is kept constant, association and dissociation rate constants turn out rather independent of multivalency, although of course still very dependent on the total energy. The association and dissociation mechanisms, however, depend on the presence and nature of the intermediate states. For instance, pathways that visit intermediate states are less prevalent for particles with five binding sites compared to the case of particles with only three bonds. The presence of intermediate states can lead to kinetic trapping and malformed aggregates. We discuss implications for natural forming complexes such as virus shells and for the design of artificial colloidal patchy particles.
Collapse
Affiliation(s)
- Arthur C Newton
- Van't Hoff Institute for Molecular Sciences, Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jan Groenewold
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Willem K Kegel
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Peter G Bolhuis
- Van't Hoff Institute for Molecular Sciences, Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
9
|
Vijaykumar A, ten Wolde PR, Bolhuis PG. Generalised expressions for the association and dissociation rate constants of molecules with multiple binding sites. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1473653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Adithya Vijaykumar
- NWO Institute AMOLF, Amsterdam, Netherlands
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, Netherlands
| | | | - Peter G. Bolhuis
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|