1
|
Kashmari K, Patil SU, Kemppainen J, Shankara G, Odegard GM. Optimal Molecular Dynamics System Size for Increased Precision and Efficiency for Epoxy Materials. J Phys Chem B 2024; 128:4255-4265. [PMID: 38648370 DOI: 10.1021/acs.jpcb.4c00845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Molecular dynamics (MD) simulation is an important tool for predicting thermo-mechanical properties of polymer resins at the nanometer length scale, which is particularly important for efficient computationally driven design of advanced composite materials and structures. Because of the statistical nature of modeling amorphous materials on the nanometer length scale, multiple MD models (replicates) are typically built and simulated for statistical sampling of predicted properties. Larger replicates generally provide higher precision in the predictions but result in higher simulation times. Unfortunately, there is insufficient information in the literature to establish guidelines between MD model size and the resulting precision in predicted thermo-mechanical properties. The objective of this study was to determine the optimal MD model size of epoxy resin to balance efficiency and precision. The results show that an MD model size of 15,000 atoms provides for the fastest simulations without sacrificing precision in the prediction of mass density, elastic properties, strength, and thermal properties of epoxy. The results of this study are important for efficient computational process modeling and integrated computational materials engineering (ICME) for the design of next-generation composite materials for demanding applications.
Collapse
Affiliation(s)
- Khatereh Kashmari
- Michigan Technological University, Houghton, Michigan 49931, United States
| | - Sagar U Patil
- Michigan Technological University, Houghton, Michigan 49931, United States
| | - Josh Kemppainen
- Michigan Technological University, Houghton, Michigan 49931, United States
| | - Gowtham Shankara
- Michigan Technological University, Houghton, Michigan 49931, United States
| | - Gregory M Odegard
- Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
2
|
Zhou R, Luo K, Martin SW, An Q. Insights into Lithium Sulfide Glass Electrolyte Structures and Ionic Conductivity via Machine Learning Force Field Simulations. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18874-18887. [PMID: 38568163 DOI: 10.1021/acsami.4c00618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Sulfide-based solid electrolytes (SEs) are important for advancing all-solid-state batteries (ASSBs), primarily due to their high ionic conductivities and robust mechanical stability. Glassy SEs (GSEs) comprising mixed Si and P glass formers are particularly promising for their synthesis process and their ability to prevent lithium dendrite growth. However, to date, the complexity of their glassy structures hinders a complete understanding of the relationships between their structures and properties. This study introduces a new machine learning force field (ML-FF) tailored for lithium sulfide-based GSEs, enabling the exploration of their structural characteristics, mechanical properties, and lithium ionic conductivities. Using molecular dynamic (MD) simulations with this ML-FF, we explore the glass structures in varying compositions, including binary Li2S-SiS2 and Li2S-P2S5 as well as ternary Li2S-SiS2-P2S5. Our simulations yielded consistent results in terms of density, elastic modulus, radial distribution functions, and neutron structure factors compared to DFT and experimental work. Our findings reveal distinct local environments for Si and P within these glasses, with most Si atoms in edge-sharing configurations in Li2S-SiS2 and a mix of corner- and edge-sharing tetrahedra in the ternary Li2S-SiS2-P2S5 composition. For lithium ionic conductivity at 300 K, the 50Li2S-50SiS2 glass displayed the lowest conductivity at 2.1 mS/cm, while the 75Li2S-25P2S5 composition exhibited the highest conductivity at 3.6 mS/cm. The ternary glass showed a conductivity of 2.6 mS/cm, sitting between the two. Moreover, an in-depth analysis of lithium ion diffusion over the MD trajectory in the ternary glass demonstrated a significant correlation between diffusion pathways and the rotational dynamics of nearby SiS4 or PS4 tetrahedra. The ML-FF developed in this study provides an important tool for exploring a broad spectrum of solid-state and mixed former sulfide-based electrolytes.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Kun Luo
- Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Steve W Martin
- Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Qi An
- Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
3
|
Zheng L, Liu S, Ji F, Tong L, Xu S. Structural Causes of Brittleness Changes in Aluminosilicate Glasses with Different Cooling Rates. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1595. [PMID: 38612109 PMCID: PMC11012692 DOI: 10.3390/ma17071595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024]
Abstract
Numerous sources have already demonstrated that varying annealing rates can result in distinct toughness and brittleness in glass. To determine the underlying mechanisms driving this phenomenon, molecular dynamic (MD) simulations were employed to investigate the microstructure of aluminosilicate glasses under different cooling rates, and then uniaxial stretching was performed on them under controlled conditions. Results indicated that compared with short-range structure, cooling rate has a greater influence on the medium-range structure in glass, and it remarkably affects the volume of voids. Both factors play a crucial role in determining the brittleness of the glass. The former adjusts network connectivity to influence force transmission by manipulating the levels of bridging oxygen (BO) and non-bridging oxygen (NBO), and the latter accomplishes the objective of influencing brittleness by modifying the environmental conditions that affect the changes in BO and NBO content. The variation in the void environment results in differences in the strategies of the changes in BO and NBO content during glass stress. These findings stem from the excellent response of BO and NBO to the characteristic points of stress-strain curves during stretching. This paper holds importance in understanding the reasons behind the effect of cooling rates on glass brittleness and in enhancing our understanding of the ductile/brittle transition (DTB) in glass.
Collapse
Affiliation(s)
- Liqiang Zheng
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China; (L.Z.); (L.T.)
| | - Shimin Liu
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China; (L.Z.); (L.T.)
| | - Fushun Ji
- Hebei Building Materials Vocational and Technical College, Qinhuangdao 066004, China;
| | - Lianjie Tong
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China; (L.Z.); (L.T.)
| | - Shiqing Xu
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China; (L.Z.); (L.T.)
| |
Collapse
|
4
|
Marcial J, Riley BJ, Kruger AA, Lonergan CE, Vienna JD. Hanford low-activity waste vitrification: A review. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132437. [PMID: 37741214 DOI: 10.1016/j.jhazmat.2023.132437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/08/2023] [Accepted: 08/28/2023] [Indexed: 09/25/2023]
Abstract
This paper summarizes the vast body of literature (over 200 documents) related to vitrification of the low-activity waste (LAW) fraction of the Hanford tank wastes. Details are provided on the origins of the Hanford tank wastes that resulted from nuclear operations conducted between 1944 and 1989 to support nuclear weapons production. Waste treatment processes are described, including the baseline process to separate the tank waste into LAW and high-level waste fractions, and the LAW vitrification facility being started at Hanford. Significant focus is placed on the glass composition development and the property-composition relationships for Hanford LAW glasses. Glass disposal plans and criteria for minimizing long-term environmental impacts are discussed along with research perspectives.
Collapse
Affiliation(s)
- José Marcial
- Nuclear Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Brian J Riley
- Nuclear Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Albert A Kruger
- US Department of Energy, Office of River Protection, Richland, WA 99352, USA
| | - Charmayne E Lonergan
- Nuclear Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409
| | - John D Vienna
- Nuclear Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| |
Collapse
|
5
|
Sahu P, Ali SKM, Shenoy KT, Arvind A, Banerjee D, Kumar S, Manohar S, Bhatt K. Understanding the correlation of microscopic structure and macroscopic properties of multi-component glass through atomistic simulations. J CHEM SCI 2023. [DOI: 10.1007/s12039-023-02143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
6
|
Lu X, Deng L, Saslow SA, Liu H, Benmore CJ, Parruzot BP, Reiser JT, Kim SH, Ryan JV, Vienna JD, Du J. Vanadium Oxidation States and Structural Role in Aluminoborosilicate Glasses: An Integrated Experimental and Molecular Dynamics Simulation Study. J Phys Chem B 2021; 125:12365-12377. [PMID: 34726409 DOI: 10.1021/acs.jpcb.1c07134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vanadium-containing glasses have aroused interest in several fields such as electrodes for energy storage, semiconducting glasses, and nuclear waste disposal. The addition of V2O5, even in small amounts, can greatly alter the physical properties and chemical durability of glasses; however, the structural role of vanadium in these multicomponent glasses and the structural origins of these property changes are still poorly understood. We present a comprehensive study that integrates advanced characterizations and atomistic simulations to understand the composition-structure-property relationships of a series of vanadium-containing aluminoborosilicate glasses. UV-vis spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption near-edge structure (XANES) have been used to investigate the complex distribution of vanadium oxidation states as a function of composition in a series of six-component aluminoborosilicate glasses. High-energy X-ray diffraction and molecular dynamics simulations were performed to extract the detailed short- and medium-range atomistic structural information such as bond distance, coordination number, bond angle, and network connectivity, based on recently developed vanadium potential parameters. It was found that vanadium mainly exists in two oxidation states: V5+ and V4+, with the former being dominant (∼80% from XANES) in most compositions. V5+ ions were found to exist in 4-, 5-, and 6-fold coordination, while V4+ ions were mainly in 4-fold coordination. The percentage of 4-fold-coordinated boron and network connectivity initially increased with increasing V2O5 up to around 5 mol % but then decreased with higher V2O5 contents. The structural role of vanadium and the effect on glass structure and properties are discussed, providing insights into future studies of sophisticated structural descriptors to predict glass properties from composition and/or structure and aiding the formulation of borosilicate glasses for nuclear waste disposal and other applications.
Collapse
Affiliation(s)
- Xiaonan Lu
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Lu Deng
- Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203, United States
| | - Sarah A Saslow
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Hongshen Liu
- Department of Chemical Engineering, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Chris J Benmore
- Advanced Photon Source Facility, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Benjamin P Parruzot
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Joelle T Reiser
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Seong H Kim
- Department of Chemical Engineering, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Joseph V Ryan
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - John D Vienna
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jincheng Du
- Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203, United States
| |
Collapse
|
7
|
Bisbrouck N, Micoulaut M, Delaye JM, Bertani M, Charpentier T, Gin S, Angeli F. Influence of Magnesium on the Structure of Complex Multicomponent Silicates: Insights from Molecular Simulations and Neutron Scattering Experiments. J Phys Chem B 2021; 125:11761-11776. [PMID: 34664506 DOI: 10.1021/acs.jpcb.1c06990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of multicomponent glasses containing up to five oxides are studied using classical molecular dynamics simulations and neutron scattering experiments. The focus is on the role of magnesium in determining the structural properties of these glasses and the possible mixed effect during a sodium/magnesium substitution. Calculated structure functions (pair correlation function and structure factor) rather accurately reproduce their experimental counterpart, and we show that more fine structural features are qualitatively reproduced well, despite some discrepancies in the preferential spatial distribution between sodium and magnesium to aluminum and boron, as well as the nonbridging oxygen, distribution. The simulated systems offer a solid basis to support previous experimental findings on the composition-structure relationship, allowing for further analysis and property calculation. It is confirmed that the substitution of sodium by magnesium leads to the decrease of four-fold boron and a modification of the alkali coordinations with a significant change of the network structure. Specifically, magnesium coordination extracted from numerical simulations highlights a potential dissociation from penta- to tetra- and hexahedral units with increasing MgO contents along the glass series, which could not be resolved experimentally.
Collapse
Affiliation(s)
- N Bisbrouck
- CEA, DES, ISEC, DE2D, Université de Montpellier, Marcoule, 30207 Bagnols-sur-Cèze Cedex, France
| | - M Micoulaut
- Sorbonne Université, Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR 7600, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - J-M Delaye
- CEA, DES, ISEC, DE2D, Université de Montpellier, Marcoule, 30207 Bagnols-sur-Cèze Cedex, France
| | - M Bertani
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France.,Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - T Charpentier
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| | - S Gin
- CEA, DES, ISEC, DE2D, Université de Montpellier, Marcoule, 30207 Bagnols-sur-Cèze Cedex, France
| | - F Angeli
- CEA, DES, ISEC, DE2D, Université de Montpellier, Marcoule, 30207 Bagnols-sur-Cèze Cedex, France
| |
Collapse
|
8
|
Frankel GS, Vienna JD, Lian J, Guo X, Gin S, Kim SH, Du J, Ryan JV, Wang J, Windl W, Taylor CD, Scully JR. Recent Advances in Corrosion Science Applicable To Disposal of High-Level Nuclear Waste. Chem Rev 2021; 121:12327-12383. [PMID: 34259500 DOI: 10.1021/acs.chemrev.0c00990] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
High-level radioactive waste is accumulating at temporary storage locations around the world and will eventually be placed in deep geological repositories. The waste forms and containers will be constructed from glass, crystalline ceramic, and metallic materials, which will eventually come into contact with water, considering that the period of performance required to allow sufficient decay of dangerous radionuclides is on the order of 105-106 years. Corrosion of the containers and waste forms in the aqueous repository environment is therefore a concern. This Review describes the recent advances of the field of materials corrosion that are relevant to fundamental materials science issues associated with the long-term performance assessment and the design of materials with improved performance, where performance is defined as resistance to aqueous corrosion. Glass, crystalline ceramics, and metals are discussed separately, and the near-field interactions of these different material classes are also briefly addressed. Finally, recommendations for future directions of study are provided.
Collapse
Affiliation(s)
- Gerald S Frankel
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - John D Vienna
- Energy and Environment Directorate, Pacific Northwest National Laboratories, Richland, Washington 99354, United States
| | - Jie Lian
- Department of Mechanical Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Xiaolei Guo
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Stephane Gin
- CEA, DE2D, University of Montpellier, Marcoule, F-30207 Bagnols sur Cèze, 34000 Montpellier, France
| | - Seong H Kim
- Department of Chemical Engineering and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Jincheng Du
- Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203, United States
| | - Joseph V Ryan
- Energy and Environment Directorate, Pacific Northwest National Laboratories, Richland, Washington 99354, United States
| | - Jianwei Wang
- Department of Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Wolfgang Windl
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Christopher D Taylor
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - John R Scully
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| |
Collapse
|
9
|
Zhou Q, Shi Y, Deng B, Neuefeind J, Bauchy M. Experimental method to quantify the ring size distribution in silicate glasses and simulation validation thereof. SCIENCE ADVANCES 2021; 7:7/28/eabh1761. [PMID: 34233881 PMCID: PMC8262800 DOI: 10.1126/sciadv.abh1761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
Silicate glasses have no long-range order and exhibit a short-range order that is often fairly similar to that of their crystalline counterparts. Hence, the out-of-equilibrium nature of glasses is largely encoded in their medium-range order. However, the ring size distribution-the key feature of silicate glasses' medium-range structure-remains invisible to conventional experiments and, hence, is largely unknown. Here, by combining neutron diffraction experiments and force-enhanced atomic refinement simulations for two archetypical silicate glasses, we show that rings of different sizes exhibit a distinct contribution to the first sharp diffraction peak in the structure factor. On the basis of these results, we demonstrate that the ring size distribution of silicate glasses can be determined solely from neutron diffraction patterns, by analyzing the shape of the first sharp diffraction peak. This method makes it possible to uncover the nature of silicate glasses' medium-range order.
Collapse
Affiliation(s)
- Qi Zhou
- Science and Technology Division, Corning Incorporated, Corning, NY 14831, USA
- Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, USA
| | - Ying Shi
- Science and Technology Division, Corning Incorporated, Corning, NY 14831, USA.
| | - Binghui Deng
- Science and Technology Division, Corning Incorporated, Corning, NY 14831, USA
| | - Jörg Neuefeind
- Neutron Scattering Division, Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Mathieu Bauchy
- Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
Sahu P, Ali SM, Shenoy KT, Mohan S, Arvind A, Sugilal G, Kaushik CP. Molecular dynamics simulations of simplified sodium borosilicate glasses: the effect of composition on structure and dynamics. Phys Chem Chem Phys 2021; 23:14898-14912. [PMID: 34223588 DOI: 10.1039/d1cp00207d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fusion of valuable material properties has led to the acceptance of sodium borosilicate (NBS) glasses for nuclear waste immobilization. Although popular, the mechanisms associated with these properties are still only partially discovered and need further exploration. Bearing this in mind, the combination of experiments, molecular dynamics (MD) simulations and the Dell, Yuan and Bray model have been used to understand the role of composition variation for structural and physical aspects of vitrified borosilicate glasses. Experiments have been conducted to evaluate the macroscopic glass parameters of density (ρ), glass transition temperature (Tg) and thermal expansion coefficient (TEC). Experimentally observed trends for ρ, Tg and TEC with composition have been found in good agreement with the MD results. MD studies also provide a microscopic understanding of the glass structure and phenomena associated with the change in the glass composition. A detailed view of local structure and medium-range connectivity for the borosilicate glasses has been explored. Owing to a large B4 population, the results showed the abundant presence of BO4-BO4 connections, we hereby omit the generally accepted "B[4] avoidance rule" for glass. The relative propensity for connecting SiO4/BO3/BO4 structural motifs is in line with the predictions made by the Dell, Yuan and Bray model. Furthermore, the effects of composition on the mechanical integrity of NBS glasses, including the elastic nature, plastic distortion, yielding, breaking stress, and brittle fracture, have been explored by MD simulations. In addition, the glass dynamics have been evaluated by diffusion coefficient and the results suggest that Na+ is likely to be more mobile in the case of NBS1 as compared to NBS2 and NBS3 due to significant disruption in the glass network introduced by a larger amount of Na2O network modifier. Also, the diffusivity was reduced with increasing B2O3 due to the altered role of Na+ ions from network modifiers to charge compensators. The combined study of experiments, MD simulations and the Dell, Yuan and Bray model establish the correlation between the microscopic structure and macroscopic properties of NBS glasses with varied composition, which might be of great scientific use for future glasses in various applications including nuclear waste immobilization.
Collapse
Affiliation(s)
- Pooja Sahu
- Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India. and Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sk Musharaf Ali
- Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India. and Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - K T Shenoy
- Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India.
| | - Sadhana Mohan
- Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India.
| | - A Arvind
- Nuclear Recycle Group, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - G Sugilal
- Homi Bhabha National Institute, Mumbai, Maharashtra, India and Nuclear Recycle Group, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - C P Kaushik
- Homi Bhabha National Institute, Mumbai, Maharashtra, India and Nuclear Recycle Group, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| |
Collapse
|
11
|
Wang YC, Zhang JF, Chiu MH, Li JH, Jui CY, Yang TH, Lee WJ. Molecular-weight and cooling-rate dependence of polymer thermodynamics in molecular dynamics simulation. Polym J 2020. [DOI: 10.1038/s41428-020-00443-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Schweinhart B, Rodney D, Mason JK. Statistical topology of bond networks with applications to silica. Phys Rev E 2020; 101:052312. [PMID: 32575235 DOI: 10.1103/physreve.101.052312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 03/09/2020] [Indexed: 11/07/2022]
Abstract
Whereas knowledge of a crystalline material's unit cell is fundamental to understanding the material's properties and behavior, there are no obvious analogs to unit cells for disordered materials despite the frequent existence of considerable medium-range order. This article views a material's structure as a collection of local atomic environments that are sampled from some underlying probability distribution of such environments, with the advantage of offering a unified description of both ordered and disordered materials. Crystalline materials can then be regarded as special cases where the underlying probability distribution is highly concentrated around the traditional unit cell. The H_{1} barcode is proposed as a descriptor of local atomic environments suitable for disordered bond networks and is applied with three other descriptors to molecular dynamics simulations of silica glasses. Each descriptor reliably distinguishes the structure of glasses produced at different cooling rates, with the H_{1} barcode and coordination profile providing the best separation. The approach is generally applicable to any system that can be represented as a sparse graph.
Collapse
Affiliation(s)
- B Schweinhart
- Department of Mathematics, Ohio State University, Columbus, Ohio 43210, USA
| | - D Rodney
- Institut Lumière Matière, University of Lyon, Villeurbanne, Lyon F-69622, France
| | - J K Mason
- Department of Materials Science and Engineering, University of California, Davis, California 95616, USA
| |
Collapse
|
13
|
Li W, Zhao X, Liu C, Coudert FX. Ab Initio Molecular Dynamics of CdSe Quantum-Dot-Doped Glasses. J Am Chem Soc 2020; 142:3905-3912. [PMID: 32011133 DOI: 10.1021/jacs.9b12073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We have probed the local atomic structure of the interface between a CdSe quantum dot (QD) and a sodium silicate glass matrix. Using ab initio molecular dynamics simulations, we determined the structural properties and bond lengths, in excellent agreement with previous experimental observations. On the basis of an analysis of radial distribution functions, coordination environment, and ring structures, we demonstrate that an important structural reconstruction occurs at the interface between the CdSe QD and the glass matrix. The incorporation of the CdSe QD disrupts the Na-O bonds, while stronger SiO4 tetrahedra are reformed. The existence of the glass matrix breaks the stable 4-membered (4MR) and 6-membered (6MR) Cd-Se rings, and we observe a disassociated Cd atom migrated in the glass matrix. Besides, the formation of Se-Na and Cd-O linkages is observed at the CdSe QD/glass interface. These results significantly extend our understanding of the interfacial structure of CdSe QD-doped glasses and provide physical and chemical insight into the possible defect structure origin of CdSe QD, of interest to the fabrication of the highly luminescent CdSe QD-doped glasses.
Collapse
Affiliation(s)
- Wenke Li
- State Key Laboratory of Silicate Materials for Architectures , Wuhan University of Technology , Hubei 430070 , China.,Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris , 75005 Paris , France
| | - Xiujian Zhao
- State Key Laboratory of Silicate Materials for Architectures , Wuhan University of Technology , Hubei 430070 , China
| | - Chao Liu
- State Key Laboratory of Silicate Materials for Architectures , Wuhan University of Technology , Hubei 430070 , China
| | - François-Xavier Coudert
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris , 75005 Paris , France
| |
Collapse
|
14
|
Urata S. An efficient computational procedure to obtain a more stable glass structure. J Chem Phys 2019; 151:224502. [DOI: 10.1063/1.5133413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Shingo Urata
- Innovative Technology Laboratories, AGC Inc., 1150 Hazawa-cho Kanagawa-ku, Yokohama 221-8755, Kanagawa, Japan
| |
Collapse
|
15
|
Zhao J, Xu X, Li P, Li X, Chen D, Qiao X, Du J, Qian G, Fan X. Structural Origins of RF3/NaRF4 Nanocrystal Precipitation from Phase-Separated SiO2–Al2O3–RF3–NaF Glasses: A Molecular Dynamics Simulation Study. J Phys Chem B 2019; 123:3024-3032. [DOI: 10.1021/acs.jpcb.9b01674] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Junjie Zhao
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203, United States
| | - Xiuxia Xu
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203, United States
| | - Pengcheng Li
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinyue Li
- College of Materials and Environmental Engineering, HangZhou Dianzi University, Hangzhou 310018, China
| | - Daqin Chen
- College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
| | - Xvsheng Qiao
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jincheng Du
- Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203, United States
| | - Guodong Qian
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xianping Fan
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
16
|
Wang M, Smedskjaer MM, Mauro JC, Bauchy M. Modifier clustering and avoidance principle in borosilicate glasses: A molecular dynamics study. J Chem Phys 2019; 150:044502. [PMID: 30709277 DOI: 10.1063/1.5051746] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Oxide glasses are typically described as having a random, disordered skeleton of network-forming polyhedra that are depolymerized by network-modifying cations. However, the existence of local heterogeneity or clustering within the network-forming and network-modifying species remains unclear. Here, based on molecular dynamics simulations, we investigate the atomic structure of a series of borosilicate glasses. We show that the network-modifying cations exhibit some level of clustering that depends on composition-in agreement with Greaves' modified random network model. In addition, we demonstrate the existence of some mutual avoidance among network-forming atoms, which echoes the Loewenstein avoidance principle typically observed in aluminosilicate phases. Importantly, we demonstrate that the degree of heterogeneity in the spatial distribution of the network modifiers is controlled by the level of ordering in the interconnectivity of the network formers. Specifically, the mutual avoidance of network formers is found to decrease the propensity for modifier clustering.
Collapse
Affiliation(s)
- Mengyi Wang
- Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, USA
| | - Morten M Smedskjaer
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - John C Mauro
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Mathieu Bauchy
- Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
17
|
Lu X, Deng L, Huntley C, Ren M, Kuo PH, Thomas T, Chen J, Du J. Mixed Network Former Effect on Structure, Physical Properties, and Bioactivity of 45S5 Bioactive Glasses: An Integrated Experimental and Molecular Dynamics Simulation Study. J Phys Chem B 2018; 122:2564-2577. [DOI: 10.1021/acs.jpcb.7b12127] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaonan Lu
- Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203, United States
| | - Lu Deng
- Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203, United States
| | - Caitlin Huntley
- Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203, United States
| | - Mengguo Ren
- Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203, United States
| | - Po-Hsuen Kuo
- Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203, United States
| | - Ty Thomas
- Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203, United States
| | - Jonathan Chen
- Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203, United States
| | - Jincheng Du
- Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203, United States
| |
Collapse
|
18
|
Ren M, Lu X, Deng L, Kuo PH, Du J. B2O3/SiO2 substitution effect on structure and properties of Na2O–CaO–SrO–P2O5–SiO2 bioactive glasses from molecular dynamics simulations. Phys Chem Chem Phys 2018; 20:14090-14104. [DOI: 10.1039/c7cp08358k] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The effect of B2O3/SiO2 substitution in SrO-containing 55S4.3 bioactive glasses on glass structure and properties, such as ionic diffusion and glass transition temperature, was investigated by combining experiments and molecular dynamics simulations with newly developed potentials.
Collapse
Affiliation(s)
- Mengguo Ren
- Department of Materials Science and Engineering
- University of North Texas
- Denton
- USA
| | - Xiaonan Lu
- Department of Materials Science and Engineering
- University of North Texas
- Denton
- USA
| | - Lu Deng
- Department of Materials Science and Engineering
- University of North Texas
- Denton
- USA
| | - Po-Hsuen Kuo
- Department of Materials Science and Engineering
- University of North Texas
- Denton
- USA
| | - Jincheng Du
- Department of Materials Science and Engineering
- University of North Texas
- Denton
- USA
| |
Collapse
|