1
|
Wickstrom L, Gallicchio E, Chen L, Kurtzman T, Deng N. Developing end-point methods for absolute binding free energy calculation using the Boltzmann-quasiharmonic model. Phys Chem Chem Phys 2022; 24:6037-6052. [PMID: 35212338 PMCID: PMC9044818 DOI: 10.1039/d1cp05075c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the physical forces underlying receptor-ligand binding requires robust methods for analyzing the binding thermodynamics. In end-point binding free energy methods the binding free energy is naturally decomposable into physically intuitive contributions such as the solvation free energy and configurational entropy that can provide insights. Here we present a new end-point method called EE-BQH (Effective Energy-Boltzmann-Quasiharmonic) which combines the Boltzmann-Quasiharmonic model for configurational entropy with different solvation free energy methods, such as the continuum solvent PBSA model and the integral equation-based 3D-RISM, to estimate the absolute binding free energy. We compare EE-BQH with other treatments of configurational entropy such as Quasiharmonic models in internal coordinates (QHIC) and in Cartesian coordinates (QHCC), and Normal Mode analysis (NMA), by testing them on the octa acids host-guest complexes from the SAMPL8 blind challenge. The accuracies in the calculated absolute binding free energies strongly depend on the configurational entropy and solvation free energy methods used. QHIC and BQH yield the best agreements with the established potential of mean force (PMF) estimates, with R2 of ∼0.7 and mean unsigned error of ∼1.7 kcal mol-1. These results from the end-point calculations are also in similar agreement with experiments. While 3D-RISM in combination with QHIC or BQH lead to reasonable correlations with the PMF results and experiments, the calculated absolute binding free energies are underestimated by ∼5 kcal mol-1. While the binding is accompanied by a significant reduction in the ligand translational/rotational entropy, the change in the torsional entropy in these host-guest systems is slightly positive. Compared with BQH, QHIC underestimates the reduction of configurational entropy because of the non-Gaussian probability distributions in the ligand rotation and a small number of torsions. The study highlights the crucial role of configurational entropy in determining binding and demonstrates the potential of using the new end-point method to provide insights in more complex protein-ligand systems.
Collapse
Affiliation(s)
- Lauren Wickstrom
- Borough of Manhattan Community College, The City University of New York, Department of Science, New York, New York, USA
| | - Emilio Gallicchio
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York, USA.,PhD Program in Chemistry, Graduate Center of the City University of New York, New York, USA.,PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, USA
| | - Lieyang Chen
- PhD Program in Chemistry, Graduate Center of the City University of New York, New York, USA.,PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, USA.,Department of Chemistry, Lehman College, The City University of New York, Bronx, New York, USA
| | - Tom Kurtzman
- PhD Program in Chemistry, Graduate Center of the City University of New York, New York, USA.,PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, USA.,Department of Chemistry, Lehman College, The City University of New York, Bronx, New York, USA
| | - Nanjie Deng
- Department of Chemistry and Physical Sciences, Pace University, New York, New York, USA.
| |
Collapse
|
2
|
Pham TNH, Nguyen TH, Tam NM, Y Vu T, Pham NT, Huy NT, Mai BK, Tung NT, Pham MQ, V Vu V, Ngo ST. Improving ligand-ranking of AutoDock Vina by changing the empirical parameters. J Comput Chem 2021; 43:160-169. [PMID: 34716930 DOI: 10.1002/jcc.26779] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 01/09/2023]
Abstract
AutoDock Vina (Vina) achieved a very high docking-success rate, p ^ , but give a rather low correlation coefficient, R , for binding affinity with respect to experiments. This low correlation can be an obstacle for ranking of ligand-binding affinity, which is the main objective of docking simulations. In this context, we evaluated the dependence of Vina R coefficient upon its empirical parameters. R is affected more by changing the gauss2 and rotation than other terms. The docking-success rate p ^ is sensitive to the alterations of the gauss1, gauss2, repulsion, and hydrogen bond parameters. Based on our benchmarks, the parameter set1 has been suggested to be the most optimal. The testing study over 800 complexes indicated that the modified Vina provided higher correlation with experiment R set 1 = 0.556 ± 0.025 compared with R Default = 0.493 ± 0.028 obtained by the original Vina and R Vina 1.2 = 0.503 ± 0.029 by Vina version 1.2. Besides, the modified Vina can be also applied more widely, giving R ≥ 0.500 for 32/48 targets, compared with the default package, giving R ≥ 0.500 for 31/48 targets. In addition, validation calculations for 1036 complexes obtained from version 2019 of PDBbind refined structures showed that the set1 of parameters gave higher correlation coefficient ( R set 1 = 0.617 ± 0.017 ) than the default package ( R Default = 0.543 ± 0.020 ) and Vina version 1.2 ( R Vina 1.2 = 0.540 ± 0.020 ). The version of Vina with set1 of parameters can be downloaded at https://github.com/sontungngo/mvina. The outcomes would enhance the ranking of ligand-binding affinity using Autodock Vina.
Collapse
Affiliation(s)
- T Ngoc Han Pham
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Trung Hai Nguyen
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Nguyen Minh Tam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Computational Chemistry Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Thien Y Vu
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Nhat Truong Pham
- Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Nguyen Truong Huy
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nguyen Thanh Tung
- Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Minh Quan Pham
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Van V Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
3
|
Nguyen TH, Minh DDL. Implicit ligand theory for relative binding free energies: II. An estimator based on control variates. JOURNAL OF PHYSICS COMMUNICATIONS 2020; 4:115010. [PMID: 33817346 PMCID: PMC8018686 DOI: 10.1088/2399-6528/abcbac] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Implicit ligand theory describes the relationship between the noncovalent binding free energy and the binding free energy between a ligand and multiple rigid receptor conformations. We have previously shown that if the receptor conformations are sampled from or reweighed to a holo ensemble, the binding free energy relative to the ligand that defines the ensemble can be calculated. Here, we apply a variance reduction technique known as control variates to derive a new statistical estimator for the relative binding free energy. In applications to a data set of 6 reference ligands and 18 test ligands, statistically significant differences between the estimators are not observed for most systems. However, in cases where such differences are observed, the new estimator is more accurate, precise, and converges more quickly. Performance improvements are most consistent where there is a clear correlation, with a correlation coefficient greater than 0.3, between the control variate and the statistic being averaged.
Collapse
Affiliation(s)
- Trung Hai Nguyen
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - David D L Minh
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
4
|
Minh DDL. Alchemical Grid Dock (AlGDock): Binding Free Energy Calculations between Flexible Ligands and Rigid Receptors. J Comput Chem 2020; 41:715-730. [PMID: 31397498 PMCID: PMC7263302 DOI: 10.1002/jcc.26036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/28/2019] [Accepted: 07/08/2019] [Indexed: 12/14/2022]
Abstract
Alchemical Grid Dock (AlGDock) is open-source software designed to compute the binding potential of mean force-the binding free energy between a flexible ligand and a rigid receptor-for a small organic ligand and a biological macromolecule. Multiple BPMFs can be used to rigorously compute binding affinities between flexible partners. AlGDock uses replica exchange between thermodynamic states at different temperatures and receptor-ligand interaction strengths. Receptor-ligand interaction energies are represented by interpolating precomputed grids. Thermodynamic states are adaptively initialized and adjusted on-the-fly to maintain adequate replica exchange rates. In demonstrative calculations, when the bound ligand is treated as fully solvated, AlGDock estimates BPMFs with a precision within 4 kT in 65% and within 8 kT for 91% of systems. It correctly identifies the native binding pose in 83% of simulations. Performance is sometimes limited by subtle differences in the important configuration space of sampled and targeted thermodynamic states. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David D L Minh
- Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois, 60616
| |
Collapse
|
5
|
Xie B, Minh DDL. Alchemical Grid Dock (AlGDock) calculations in the D3R Grand Challenge 3 : Binding free energies between flexible ligands and rigid receptors. J Comput Aided Mol Des 2019; 33:61-69. [PMID: 30084078 PMCID: PMC6363907 DOI: 10.1007/s10822-018-0143-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/01/2018] [Indexed: 10/28/2022]
Abstract
We participated in Subchallenges 1 and 2 of the Drug Design Data Resource (D3R) Grand Challenge 3. To prepare our submissions, we performed molecular docking with UCSF DOCK 6 and binding potential of mean force (BPMF) calculations-free energy calculations between flexible ligands and rigid receptors-using our open-source software package Alchemical Grid Dock (AlGDock). For each system, submissions were based on the minimum BPMF calculated for a selected set of crystal structures. In Subchallenge 1, our workflow performed poorly. Possible reasons for the poor performance include the neglect of cooperative ligands and limited sampling of ligand binding poses. In Subchallenge 2, our workflow led to some of most highly correlated submissions (Pearson R = 0.5) for vascular endothelial growth factor receptor 2. However, our results were poorly correlated for Janus Kinase 2 and Mitogen-activated protein kinase 14. Affinity prediction could potentially be improved by systematic selection of more diverse receptor configurations.
Collapse
Affiliation(s)
- Bing Xie
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA, Tel.: (312)567-3411,
| | - David D. L. Minh
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA, Tel.: (312)567-3411,
| |
Collapse
|
6
|
Xie B, Clark JD, Minh DDL. Efficiency of Stratification for Ensemble Docking Using Reduced Ensembles. J Chem Inf Model 2018; 58:1915-1925. [PMID: 30114370 PMCID: PMC6338335 DOI: 10.1021/acs.jcim.8b00314] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular docking can account for receptor flexibility by combining the docking score over multiple rigid receptor conformations, such as snapshots from a molecular dynamics simulation. Here, we evaluate a number of common snapshot selection strategies using a quality metric from stratified sampling, the efficiency of stratification, which compares the variance of a selection strategy to simple random sampling. We also extend the metric to estimators of exponential averages (which involve an exponential transformation, averaging, and inverse transformation) and minima. For docking sets of over 500 ligands to four different proteins of varying flexibility, we observe that, for estimating ensemble averages and exponential averages, many clustering algorithms have similar performance trends: for a few snapshots (less than 25), medoids are the most efficient, while, for a larger number, optimal (the allocation that minimizes the variance) and proportional (to the size of each cluster) allocation become more efficient. Proportional allocation appears to be the most consistently efficient for estimating minima.
Collapse
Affiliation(s)
- Bing Xie
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - John D. Clark
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - David D. L. Minh
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|