1
|
Eltareb A, Khan BA, Lopez GE, Giovambattista N. Nuclear quantum effects on glassy water under pressure: Vitrification and pressure-induced transformations. J Chem Phys 2024; 161:234502. [PMID: 39679523 DOI: 10.1063/5.0238823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024] Open
Abstract
We perform classical molecular dynamics (MD) and path-integral MD (PIMD) simulations of H2O and D2O using the q-TIP4P/F model over a wide range of temperatures and pressures to study the nuclear quantum effects (NQEs) on (i) the vitrification of liquid water upon isobaric cooling at different pressures and (ii) pressure-induced transformations at constant temperature between low-density amorphous and high-density amorphous ice (LDA and HDA) and hexagonal ice Ih and HDA. Upon isobaric cooling, classical and quantum H2O and D2O vitrify into a continuum of intermediate amorphous ices (IA), with densities in-between those of LDA and HDA (depending on pressure). Importantly, the density of the IA varies considerably if NQEs are included (similar conclusions hold for ice Ih at all pressures studied). While the structure of the IA is not very sensitive to NQE, the geometry of the hydrogen-bond (HB) is. NQE leads to longer and less linear HB in LDA, HDA, and ice Ih than found in the classical case. Interestingly, the delocalization of the H/D atoms is non-negligible and identical in LDA, HDA, and ice Ih at all pressures studied. Our isothermal compression/decompression MD/PIMD simulations show that classical and quantum H2O and D2O all exhibit LDA-HDA and ice Ih-HDA transformations, consistent with experiments. The inclusion of NQE leads to a softer HB-network, which lowers slightly the LDA/ice Ih-to-HDA transformation pressures. Interestingly, the HB in HDA is longer and less linear than in LDA, which is counterintuitive given that HDA is ≈25% denser than LDA. Overall, our results show that, while classical computer simulations provide the correct qualitative phenomenology of ice and glassy water, NQEs are necessary for a quantitative description.
Collapse
Affiliation(s)
- Ali Eltareb
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA
| | - Bibi A Khan
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA
| | - Gustavo E Lopez
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA
- Department of Chemistry, Lehman College of the City University of New York, Bronx, New York 10468, USA
| | - Nicolas Giovambattista
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA
| |
Collapse
|
2
|
Jedrecy A, Saitta AM, Pietrucci F. Free energy calculations and unbiased molecular dynamics targeting the liquid-liquid transition in water no man's land. J Chem Phys 2023; 158:014502. [PMID: 36610960 DOI: 10.1063/5.0120789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The existence of a first-order phase transition between a low-density liquid (LDL) and a high-density liquid (HDL) form of supercooled water has been a central and highly debated issue of physics and chemistry for the last three decades. We present a computational study that allows us to determine the free-energy landscapes of supercooled water over a wide range of pressure and temperature conditions using the TIP4P/2005 force field. Our approach combines topology-based structural transformation coordinates, state-of-the-art free-energy calculation methods, and extensive unbiased molecular dynamics. All our diverse simulations cannot detect any barrier within the investigated timescales and system size, for a discontinuous transition between the LDL and HDL forms throughout the so-called "no man's land," until the onset of the solid, non-diffusive amorphous forms.
Collapse
Affiliation(s)
- Alexandre Jedrecy
- Insitut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, CNRS, MNHN, UMR 7590, Paris, France
| | - A Marco Saitta
- Insitut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, CNRS, MNHN, UMR 7590, Paris, France
| | - Fabio Pietrucci
- Insitut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, CNRS, MNHN, UMR 7590, Paris, France
| |
Collapse
|
3
|
Foffi R, Sciortino F. Correlated Fluctuations of Structural Indicators Close to the Liquid-Liquid Transition in Supercooled Water. J Phys Chem B 2022; 127:378-386. [PMID: 36538764 PMCID: PMC9841516 DOI: 10.1021/acs.jpcb.2c07169] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Multiple numerical studies have unambiguously shown the existence of a liquid-liquid critical point in supercooled states for different numerical models of water, and various structural indicators have been put forward to describe the transformation associated with this phase transition. Here we analyze numerical simulations of near-critical supercooled water to compare the behavior of several of such indicators with critical density fluctuations. We show that close to the critical point most indicators are strongly correlated to density, and some of them even display identical distributions of fluctuations. These indicators probe the exact same free energy landscape, therefore providing a thermodynamic description of critical supercooled water which is identical to that provided by the density order parameter. This implies that close to the critical point, there is a tight coupling between many, only apparently distinct, structural degrees of freedom.
Collapse
Affiliation(s)
- Riccardo Foffi
- Institute
for Environmental Engineering, Department of Civil, Environmental
and Geomatic Engineering, ETH Zürich, 8093Zürich, Switzerland
| | - Francesco Sciortino
- Dipartimento
di Fisica, Sapienza Università di
Roma, Piazzale Aldo Moro
5, I-00185Rome, Italy,E-mail:
| |
Collapse
|
4
|
Foffi R, Sciortino F. Structure of High-Pressure Supercooled and Glassy Water. PHYSICAL REVIEW LETTERS 2021; 127:175502. [PMID: 34739286 DOI: 10.1103/physrevlett.127.175502] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
We numerically investigate the structure of deep supercooled and glassy water under pressure, covering the range of densities corresponding to the experimentally produced high- and very-high-density amorphous phases. At T=188 K, a continuous increase in density is observed on varying pressure from 2.5 to 13 kbar, with no signs of first-order transitions. Exploiting a recently proposed approach to the analysis of the radial distribution function-based on topological properties of the hydrogen-bond network-we are able to identify well-defined local geometries that involve pairs of molecules separated by multiple hydrogen bonds, specific to the high- and very-high-density structures.
Collapse
Affiliation(s)
- Riccardo Foffi
- Department of Physics, Sapienza Università di Roma, Piazzale Aldo Moro, 2, 00185 Rome, Italy
| | - Francesco Sciortino
- Department of Physics, Sapienza Università di Roma, Piazzale Aldo Moro, 2, 00185 Rome, Italy
| |
Collapse
|
5
|
Liu Y, Sun G, Xu L. Glass polyamorphism in gallium: Two amorphous solid states and their transformation on the potential energy landscape. J Chem Phys 2021; 154:134503. [PMID: 33832248 DOI: 10.1063/5.0038058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Using the potential energy landscape (PEL) formalism and molecular dynamics simulations, we investigate a phase transformation between two amorphous solid states of gallium, namely, a low-density amorphous solid (LDA) and a high-density amorphous solid (HDA), and compare with its equilibrium counterpart, the liquid-liquid phase transition (LLPT). It is found that on the PEL, the signatures of the out-of-equilibrium LDA-HDA transition are reminiscent of those of the equilibrium LLPT in terms of pressure, inherent structure pressure, inherent structure energy, and shape function, indicating that the LDA-HDA transformation is a first-order-like transition. However, differences are also found between the out-of-equilibrium phase transition and the equilibrium one, for example, the path from LDA to HDA on the PEL cannot be accessed by the path from LDL to HDL. Our results also suggest that the signatures of the out-of-equilibrium transition in gallium are rather general features of systems with an accessible LLPT-not only systems with pairwise interactions but also those with many-body interactions. This finding is of crucial importance for obtaining a deeper understanding of the nature of transitions in the polyamorphic family.
Collapse
Affiliation(s)
- Yizhi Liu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Gang Sun
- School of Chemistry, University of Sydney, Sydney, New South Wales, Australia
| | - Limei Xu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Bachler J, Handle PH, Giovambattista N, Loerting T. Glass polymorphism and liquid-liquid phase transition in aqueous solutions: experiments and computer simulations. Phys Chem Chem Phys 2019; 21:23238-23268. [PMID: 31556899 DOI: 10.1039/c9cp02953b] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One of the most intriguing anomalies of water is its ability to exist as distinct amorphous ice forms (glass polymorphism or polyamorphism). This resonates well with the possible first-order liquid-liquid phase transition (LLPT) in the supercooled state, where ice is the stable phase. In this Perspective, we review experiments and computer simulations that search for LLPT and polyamorphism in aqueous solutions containing salts and alcohols. Most studies on ionic solutes are devoted to NaCl and LiCl; studies on alcohols have mainly focused on glycerol. Less attention has been paid to protein solutions and hydrophobic solutes, even though they reveal promising avenues. While all solutions show polyamorphism and an LLPT only in dilute, sub-eutectic mixtures, there are differences regarding the nature of the transition. Isocompositional transitions for varying mole fractions are observed in alcohol but not in ionic solutions. This is because water can surround alcohol molecules either in a low- or high-density configuration whereas for ionic solutes, the water ion hydration shell is forced into high-density structures. Consequently, the polyamorphic transition and the LLPT are prevented near the ions, but take place in patches of water within the solutions. We highlight discrepancies and different interpretations within the experimental community as well as the key challenges that need consideration when comparing experiments and simulations. We point out where reinterpretation of past studies helps to draw a unified, consistent picture. In addition to the literature review, we provide original experimental results. A list of eleven open questions that need further consideration is identified.
Collapse
Affiliation(s)
- Johannes Bachler
- Institute of Physical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria.
| | | | | | | |
Collapse
|
7
|
|
8
|
Handle PH, Sciortino F, Giovambattista N. Glass polymorphism in TIP4P/2005 water: A description based on the potential energy landscape formalism. J Chem Phys 2019; 150:244506. [PMID: 31255050 DOI: 10.1063/1.5100346] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The potential energy landscape (PEL) formalism is a statistical mechanical approach to describe supercooled liquids and glasses. Here, we use the PEL formalism to study the pressure-induced transformations between low-density amorphous ice (LDA) and high-density amorphous ice (HDA) using computer simulations of the TIP4P/2005 molecular model of water. We find that the properties of the PEL sampled by the system during the LDA-HDA transformation exhibit anomalous behavior. In particular, at conditions where the change in density during the LDA-HDA transformation is approximately discontinuous, reminiscent of a first-order phase transition, we find that (i) the inherent structure (IS) energy, eIS(V), is a concave function of the volume and (ii) the IS pressure, PIS(V), exhibits a van der Waals-like loop. In addition, the curvature of the PEL at the IS is anomalous, a nonmonotonic function of V. In agreement with previous studies, our work suggests that conditions (i) and (ii) are necessary (but not sufficient) signatures of the PEL for the LDA-HDA transformation to be reminiscent of a first-order phase transition. We also find that one can identify two different regions of the PEL, one associated with LDA and another with HDA. Our computer simulations are performed using a wide range of compression/decompression and cooling rates. In particular, our slowest cooling rate (0.01 K/ns) is within the experimental rates employed in hyperquenching experiments to produce LDA. Interestingly, the LDA-HDA transformation pressure that we obtain at T = 80 K and at different rates extrapolates remarkably well to the corresponding experimental pressure.
Collapse
Affiliation(s)
- Philip H Handle
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Francesco Sciortino
- Department of Physics, Sapienza-University of Rome, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Nicolas Giovambattista
- Department of Physics, Brooklyn College of the City University of New York, New York, New York 10016, USA
| |
Collapse
|
9
|
Montes de Oca JM, Accordino SR, Appignanesi GA, Handle PH, Sciortino F. Size dependence of dynamic fluctuations in liquid and supercooled water. J Chem Phys 2019; 150:144505. [DOI: 10.1063/1.5085886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Joan Manuel Montes de Oca
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - Sebastián R. Accordino
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - Gustavo A. Appignanesi
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - Philip H. Handle
- Department of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Francesco Sciortino
- Dipartimento di Fisica, Sapienza Universita’ di Roma, Piazzale A. Moro 5, Roma 00185, Italy
- CNR-ISC, c/o Sapienza, Piazzale A. Moro 5, Roma 00185, Italy
| |
Collapse
|
10
|
Abstract
Thermal stability against crystallization upon isobaric heating at pressure 0.1 ≤ P ≤ 1.9 GPa is compared for five variants of high- (HDA) and very high-density amorphous ice (VHDA) with different preparation history. At 0.1-0.3 GPa expanded HDA (eHDA) and VHDA reach the same state before crystallization, which we infer to be the contested high-density liquid (HDL). Thus, 0.3 GPa sets the high-pressure limit for the possibility to observe HDL for timescales of minutes, hours, and longer. At P > 0.3 GPa the annealed amorphous ices no longer reach the same state before crystallization. Further examination of the results demonstrates that crystallization times are significantly affected both by the density of the amorphous matrix at the crystallization temperature T x as well as by nanocrystalline domains remaining in unannealed HDA (uHDA) as a consequence of incomplete pressure-induced amorphization.
Collapse
|
11
|
Handle PH, Loerting T. Experimental study of the polyamorphism of water. II. The isobaric transitions between HDA and VHDA at intermediate and high pressures. J Chem Phys 2018; 148:124509. [DOI: 10.1063/1.5019414] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Philip H. Handle
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Thomas Loerting
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| |
Collapse
|