1
|
Yang C, Ladd-Parada M, Nam K, Jeong S, You S, Eklund T, Späh A, Pathak H, Lee JH, Eom I, Kim M, Perakis F, Nilsson A, Kim KH, Amann-Winkel K. Unveiling a common phase transition pathway of high-density amorphous ices through time-resolved x-ray scattering. J Chem Phys 2024; 160:244503. [PMID: 38916268 DOI: 10.1063/5.0216904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/07/2024] [Indexed: 06/26/2024] Open
Abstract
Here, we investigate the hypothesis that despite the existence of at least two high-density amorphous ices, only one high-density liquid state exists in water. We prepared a very-high-density amorphous ice (VHDA) sample and rapidly increased its temperature to around 205 ± 10 K using laser-induced isochoric heating. This temperature falls within the so-called "no-man's land" well above the glass-liquid transition, wherein the IR laser pulse creates a metastable liquid state. Subsequently, this high-density liquid (HDL) state of water decompresses over time, and we examined the time-dependent structural changes using short x-ray pulses from a free electron laser. We observed a liquid-liquid transition to low-density liquid water (LDL) over time scales ranging from 20 ns to 3 μs, consistent with previous experimental results using expanded high-density amorphous ice (eHDA) as the initial state. In addition, the resulting LDL derived both from VHDA and eHDA displays similar density and degree of inhomogeneity. Our observation supports the idea that regardless of the initial annealing states of the high-density amorphous ices, the same HDL and final LDL states are reached at temperatures around 205 K.
Collapse
Affiliation(s)
- Cheolhee Yang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Marjorie Ladd-Parada
- Chemistry Department, Glycoscience Division, Kungliga Tekniska Högskola, Roslagstullsbacken 21, 11421 Stockholm, Sweden
| | - Kyeongmin Nam
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Sangmin Jeong
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Seonju You
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Tobias Eklund
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
- Max-Planck-Institute for Polymer Research, 55128 Mainz, Germany
- Institute for Physics, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Alexander Späh
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Harshad Pathak
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Jae Hyuk Lee
- Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Intae Eom
- Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Minseok Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Fivos Perakis
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Anders Nilsson
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Kyung Hwan Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Katrin Amann-Winkel
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
- Max-Planck-Institute for Polymer Research, 55128 Mainz, Germany
- Institute for Physics, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| |
Collapse
|
2
|
Tonauer CM, Fidler LR, Giebelmann J, Yamashita K, Loerting T. Nucleation and growth of crystalline ices from amorphous ices. J Chem Phys 2023; 158:141001. [PMID: 37061482 DOI: 10.1063/5.0143343] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
We here review mostly experimental and some computational work devoted to nucleation in amorphous ices. In fact, there are only a handful of studies in which nucleation and growth in amorphous ices are investigated as two separate processes. In most studies, crystallization temperatures Tx or crystallization rates RJG are accessed for the combined process. Our Review deals with different amorphous ices, namely, vapor-deposited amorphous solid water (ASW) encountered in many astrophysical environments; hyperquenched glassy water (HGW) produced from μm-droplets of liquid water; and low density amorphous (LDA), high density amorphous (HDA), and very high density amorphous (VHDA) ices produced via pressure-induced amorphization of ice I or from high-pressure polymorphs. We cover the pressure range of up to about 6 GPa and the temperature range of up to 270 K, where only the presence of salts allows for the observation of amorphous ices at such high temperatures. In the case of ASW, its microporosity and very high internal surface to volume ratio are the key factors determining its crystallization kinetics. For HGW, the role of interfaces between individual glassy droplets is crucial but mostly neglected in nucleation or crystallization studies. In the case of LDA, HDA, and VHDA, parallel crystallization kinetics to different ice phases is observed, where the fraction of crystallized ices is controlled by the heating rate. A key aspect here is that in different experiments, amorphous ices of different "purities" are obtained, where "purity" here means the "absence of crystalline nuclei." For this reason, "preseeded amorphous ice" and "nuclei-free amorphous ice" should be distinguished carefully, which has not been done properly in most studies. This makes a direct comparison of results obtained in different laboratories very hard, and even results obtained in the same laboratory are affected by very small changes in the preparation protocol. In terms of mechanism, the results are consistent with amorphous ices turning into an ultraviscous, deeply supercooled liquid prior to nucleation. However, especially in preseeded amorphous ices, crystallization from the preexisting nuclei takes place simultaneously. To separate the time scales of crystallization from the time scale of structure relaxation cleanly, the goal needs to be to produce amorphous ices free from crystalline ice nuclei. Such ices have only been produced in very few studies.
Collapse
Affiliation(s)
- Christina M Tonauer
- Institute of Physical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Lilli-Ruth Fidler
- Institute of Physical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Johannes Giebelmann
- Institute of Physical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Keishiro Yamashita
- Institute of Physical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Thomas Loerting
- Institute of Physical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
3
|
Tonauer CM, Bauer M, Loerting T. The impact of temperature and unwanted impurities on slow compression of ice. Phys Chem Chem Phys 2021; 24:35-41. [PMID: 34897324 PMCID: PMC8694060 DOI: 10.1039/d1cp03922a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
For slowly compressed hexagonal ice pressure-induced amorphisation to high-density amorphous ice (HDA) takes place below and at 130 K, but polymorphic transformation to ice IX takes place at 140–170 K. Stable ice II only forms above 170 K. Ice IX impurities trigger ice IX growth even at 120 K. HDA and ice IX are equally long-lived, where both can be regarded as metastable phases. Slow compression of ice at 100 K usually results in pressure-amorphisation, unless there are ice IX seeds and temperature gradients.![]()
Collapse
Affiliation(s)
- Christina M Tonauer
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, Innsbruck A-6020, Austria.
| | - Marion Bauer
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, Innsbruck A-6020, Austria.
| | - Thomas Loerting
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, Innsbruck A-6020, Austria.
| |
Collapse
|
4
|
Foffi R, Sciortino F. Structure of High-Pressure Supercooled and Glassy Water. PHYSICAL REVIEW LETTERS 2021; 127:175502. [PMID: 34739286 DOI: 10.1103/physrevlett.127.175502] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
We numerically investigate the structure of deep supercooled and glassy water under pressure, covering the range of densities corresponding to the experimentally produced high- and very-high-density amorphous phases. At T=188 K, a continuous increase in density is observed on varying pressure from 2.5 to 13 kbar, with no signs of first-order transitions. Exploiting a recently proposed approach to the analysis of the radial distribution function-based on topological properties of the hydrogen-bond network-we are able to identify well-defined local geometries that involve pairs of molecules separated by multiple hydrogen bonds, specific to the high- and very-high-density structures.
Collapse
Affiliation(s)
- Riccardo Foffi
- Department of Physics, Sapienza Università di Roma, Piazzale Aldo Moro, 2, 00185 Rome, Italy
| | - Francesco Sciortino
- Department of Physics, Sapienza Università di Roma, Piazzale Aldo Moro, 2, 00185 Rome, Italy
| |
Collapse
|
5
|
Bartók AP, Hantal G, Pártay LB. Insight into Liquid Polymorphism from the Complex Phase Behavior of a Simple Model. PHYSICAL REVIEW LETTERS 2021; 127:015701. [PMID: 34270313 DOI: 10.1103/physrevlett.127.015701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/08/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
We systematically explored the phase behavior of the hard-core two-scale ramp model suggested by Jagla [Phys. Rev. E 63, 061501 (2001)PRESCM1539-375510.1103/PhysRevE.63.061501] using a combination of the nested sampling and free energy methods. The sampling revealed that the phase diagram of the Jagla potential is significantly richer than previously anticipated, and we identified a family of new crystalline structures, which is stable over vast regions in the phase diagram. We showed that the new melting line is located at considerably higher temperature than the boundary between the low- and high-density liquid phases, which was previously suggested to lie in a thermodynamically stable region. The newly identified crystalline phases show unexpectedly complex structural features, some of which are shared with the high-pressure ice VI phase.
Collapse
Affiliation(s)
- Albert P Bartók
- Department of Physics and Warwick Centre for Predictive Modelling, School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - György Hantal
- Institute of Physics and Materials Science, University of Natural Resources and Life Sciences, Peter-Jordan-Strasse 82, 1190 Vienna, Austria
| | - Livia B Pártay
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
6
|
Affiliation(s)
- Hajime Tanaka
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
7
|
Some Aspects of the Liquid Water Thermodynamic Behavior: From The Stable to the Deep Supercooled Regime. Int J Mol Sci 2020; 21:ijms21197269. [PMID: 33019640 PMCID: PMC7582456 DOI: 10.3390/ijms21197269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/02/2022] Open
Abstract
Liquid water is considered to be a peculiar example of glass forming materials because of the possibility of giving rise to amorphous phases with different densities and of the thermodynamic anomalies that characterize its supercooled liquid phase. In the present work, literature data on the density of bulk liquid water are analyzed in a wide temperature-pressure range, also including the glass phases. A careful data analysis, which was performed on different density isobars, made in terms of thermodynamic response functions, like the thermal expansion αP and the specific heat differences CP−CV, proves, exclusively from the experimental data, the thermodynamic consistence of the liquid-liquid transition hypothesis. The study confirms that supercooled bulk water is a mixture of two liquid “phases”, namely the high density (HDL) and the low density (LDL) liquids that characterize different regions of the water phase diagram. Furthermore, the CP−CV isobars behaviors clearly support the existence of both a liquid–liquid transition and of a liquid–liquid critical point.
Collapse
|
8
|
Bachler J, Handle PH, Giovambattista N, Loerting T. Glass polymorphism and liquid-liquid phase transition in aqueous solutions: experiments and computer simulations. Phys Chem Chem Phys 2019; 21:23238-23268. [PMID: 31556899 DOI: 10.1039/c9cp02953b] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One of the most intriguing anomalies of water is its ability to exist as distinct amorphous ice forms (glass polymorphism or polyamorphism). This resonates well with the possible first-order liquid-liquid phase transition (LLPT) in the supercooled state, where ice is the stable phase. In this Perspective, we review experiments and computer simulations that search for LLPT and polyamorphism in aqueous solutions containing salts and alcohols. Most studies on ionic solutes are devoted to NaCl and LiCl; studies on alcohols have mainly focused on glycerol. Less attention has been paid to protein solutions and hydrophobic solutes, even though they reveal promising avenues. While all solutions show polyamorphism and an LLPT only in dilute, sub-eutectic mixtures, there are differences regarding the nature of the transition. Isocompositional transitions for varying mole fractions are observed in alcohol but not in ionic solutions. This is because water can surround alcohol molecules either in a low- or high-density configuration whereas for ionic solutes, the water ion hydration shell is forced into high-density structures. Consequently, the polyamorphic transition and the LLPT are prevented near the ions, but take place in patches of water within the solutions. We highlight discrepancies and different interpretations within the experimental community as well as the key challenges that need consideration when comparing experiments and simulations. We point out where reinterpretation of past studies helps to draw a unified, consistent picture. In addition to the literature review, we provide original experimental results. A list of eleven open questions that need further consideration is identified.
Collapse
Affiliation(s)
- Johannes Bachler
- Institute of Physical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria.
| | | | | | | |
Collapse
|
9
|
Mallamace F, Corsaro C, Mallamace D, Fazio E, Chen SH. Some considerations on the water polymorphism and the liquid-liquid transition by the density behavior in the liquid phase. J Chem Phys 2019; 151:044504. [PMID: 31370513 DOI: 10.1063/1.5095687] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The bulk liquid water density data (ρ) are studied in a very large temperature pressure range including also the glass phases. A thorough analysis of their isobars, together with the suggestions of recent thermodynamical studies, gives evidence of two crossovers at T* and P* above which the hydrogen bond interaction is unable to arrange the tetrahedral network that is at the basis of the liquid polymorphism giving rise to the low density liquid (LDL). The curvatures of these isobars, as a function of T, are completely different: concave below P* (where maxima are) and convex above. In both the cases, a continuity between liquid and glass is observed with P* as the border of the density evolution toward the two different polymorphic glasses (low and high density amorphous). The experimental data of the densities of these two glasses also show a markedly different pressure dependence. Here, on the basis of these observations in bulk water and by considering a recent study on the growth of the LDL phase, by decreasing temperature, we discuss the water liquid-liquid transition and evaluate the isothermal compressibility inside the deep supercooled regime. Such a quantity shows an additional maximum that is pressure dependent that under ambient conditions agrees with a recent X-ray experiment. In particular, the present analysis suggests the presence of a liquid-liquid critical point located at about 180 MPa and 197 K.
Collapse
Affiliation(s)
- Francesco Mallamace
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Carmelo Corsaro
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra (MIFT), Università di Messina I-98166, Messina, Italy
| | - Domenico Mallamace
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra (MIFT), Università di Messina I-98166, Messina, Italy
| | - Enza Fazio
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra (MIFT), Università di Messina I-98166, Messina, Italy
| | - Sow-Hsin Chen
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
10
|
Handle PH, Sciortino F, Giovambattista N. Glass polymorphism in TIP4P/2005 water: A description based on the potential energy landscape formalism. J Chem Phys 2019; 150:244506. [PMID: 31255050 DOI: 10.1063/1.5100346] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The potential energy landscape (PEL) formalism is a statistical mechanical approach to describe supercooled liquids and glasses. Here, we use the PEL formalism to study the pressure-induced transformations between low-density amorphous ice (LDA) and high-density amorphous ice (HDA) using computer simulations of the TIP4P/2005 molecular model of water. We find that the properties of the PEL sampled by the system during the LDA-HDA transformation exhibit anomalous behavior. In particular, at conditions where the change in density during the LDA-HDA transformation is approximately discontinuous, reminiscent of a first-order phase transition, we find that (i) the inherent structure (IS) energy, eIS(V), is a concave function of the volume and (ii) the IS pressure, PIS(V), exhibits a van der Waals-like loop. In addition, the curvature of the PEL at the IS is anomalous, a nonmonotonic function of V. In agreement with previous studies, our work suggests that conditions (i) and (ii) are necessary (but not sufficient) signatures of the PEL for the LDA-HDA transformation to be reminiscent of a first-order phase transition. We also find that one can identify two different regions of the PEL, one associated with LDA and another with HDA. Our computer simulations are performed using a wide range of compression/decompression and cooling rates. In particular, our slowest cooling rate (0.01 K/ns) is within the experimental rates employed in hyperquenching experiments to produce LDA. Interestingly, the LDA-HDA transformation pressure that we obtain at T = 80 K and at different rates extrapolates remarkably well to the corresponding experimental pressure.
Collapse
Affiliation(s)
- Philip H Handle
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Francesco Sciortino
- Department of Physics, Sapienza-University of Rome, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Nicolas Giovambattista
- Department of Physics, Brooklyn College of the City University of New York, New York, New York 10016, USA
| |
Collapse
|
11
|
Shen G, Smith JS, Kenney-Benson C, Ferry RA. In situ x-ray diffraction study of polyamorphism in H2O under isothermal compression and decompression. J Chem Phys 2019; 150:244201. [DOI: 10.1063/1.5100958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Guoyin Shen
- HPCAT, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Jesse S. Smith
- HPCAT, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Curtis Kenney-Benson
- HPCAT, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Richard A. Ferry
- HPCAT, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| |
Collapse
|
12
|
Plaga LJ, Raidt A, Fuentes Landete V, Amann-Winkel K, Massani B, Gasser TM, Gainaru C, Loerting T, Böhmer R. Amorphous and crystalline ices studied by dielectric spectroscopy. J Chem Phys 2019; 150:244501. [DOI: 10.1063/1.5100785] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- L. J. Plaga
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - A. Raidt
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - V. Fuentes Landete
- Institute of Physical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - K. Amann-Winkel
- Institute of Physical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - B. Massani
- Institute of Physical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - T. M. Gasser
- Institute of Physical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - C. Gainaru
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - T. Loerting
- Institute of Physical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - R. Böhmer
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| |
Collapse
|
13
|
Mariedahl D, Perakis F, Späh A, Pathak H, Kim KH, Benmore C, Nilsson A, Amann-Winkel K. X-ray studies of the transformation from high- to low-density amorphous water. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20180164. [PMID: 30982458 PMCID: PMC6501918 DOI: 10.1098/rsta.2018.0164] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/14/2019] [Indexed: 06/01/2023]
Abstract
Here we report about the structural evolution during the conversion from high-density amorphous ices at ambient pressure to the low-density state. Using high-energy X-ray diffraction, we have monitored the transformation by following in reciprocal space the structure factor SOO( Q) and derived in real space the pair distribution function gOO( r). Heating equilibrated high-density amorphous ice (eHDA) at a fast rate (4 K min-1), the transition to the low-density form occurs very rapidly, while domains of both high- and low-density coexist. On the other hand, the transition in the case of unannealed HDA (uHDA) and very-high-density amorphous ice is more complex and of continuous nature. The direct comparison of eHDA and uHDA indicates that the molecular structure of uHDA contains a larger amount of tetrahedral motives. The different crystallization behaviour of the derived low-density amorphous states is interpreted as emanating from increased tetrahedral coordination present in uHDA. This article is part of the theme issue 'The physics and chemistry of ice: scaffolding across scales, from the viability of life to the formation of planets'.
Collapse
Affiliation(s)
- Daniel Mariedahl
- Department of Physics, AlbaNova University Center, Stockholm University, 10691 Stockholm, Sweden
| | - Fivos Perakis
- Department of Physics, AlbaNova University Center, Stockholm University, 10691 Stockholm, Sweden
| | - Alexander Späh
- Department of Physics, AlbaNova University Center, Stockholm University, 10691 Stockholm, Sweden
| | - Harshad Pathak
- Department of Physics, AlbaNova University Center, Stockholm University, 10691 Stockholm, Sweden
| | - Kyung Hwan Kim
- Department of Physics, AlbaNova University Center, Stockholm University, 10691 Stockholm, Sweden
| | - Chris Benmore
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Anders Nilsson
- Department of Physics, AlbaNova University Center, Stockholm University, 10691 Stockholm, Sweden
| | - Katrin Amann-Winkel
- Department of Physics, AlbaNova University Center, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
14
|
Abstract
Thermal stability against crystallization upon isobaric heating at pressure 0.1 ≤ P ≤ 1.9 GPa is compared for five variants of high- (HDA) and very high-density amorphous ice (VHDA) with different preparation history. At 0.1-0.3 GPa expanded HDA (eHDA) and VHDA reach the same state before crystallization, which we infer to be the contested high-density liquid (HDL). Thus, 0.3 GPa sets the high-pressure limit for the possibility to observe HDL for timescales of minutes, hours, and longer. At P > 0.3 GPa the annealed amorphous ices no longer reach the same state before crystallization. Further examination of the results demonstrates that crystallization times are significantly affected both by the density of the amorphous matrix at the crystallization temperature T x as well as by nanocrystalline domains remaining in unannealed HDA (uHDA) as a consequence of incomplete pressure-induced amorphization.
Collapse
|
15
|
Handle PH, Loerting T. Experimental study of the polyamorphism of water. I. The isobaric transitions from amorphous ices to LDA at 4 MPa. J Chem Phys 2018; 148:124508. [DOI: 10.1063/1.5019413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Philip H. Handle
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Thomas Loerting
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| |
Collapse
|