1
|
Heyes DM, Dini D, Pieprzyk S, Brańka AC, Costigliola L. Models to predict configurational adiabats of Lennard-Jones fluids and their transport coefficients. J Chem Phys 2024; 161:084502. [PMID: 39193943 DOI: 10.1063/5.0225650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
A comparison is made between three simple approximate formulas for the configurational adiabat (i.e., constant excess entropy, sex) lines in a Lennard-Jones (LJ) fluid, one of which is an analytic formula based on a harmonic approximation, which was derived by Heyes et al. [J. Chem. Phys. 159, 224504 (2023)] (analytic isomorph line, AIL). Another is where the density is normalized by the freezing density at that temperature (freezing isomorph line, FIL). It is found that the AIL formula and the average of the freezing density and the melting density ("FMIL") are configurational adiabats at all densities essentially down to the liquid-vapor binodal. The FIL approximation departs from a configurational adiabat in the vicinity of the liquid-vapor binodal close to the freezing line. The self-diffusion coefficient, D, shear viscosity, ηs, and thermal conductivity, λ, in macroscopic reduced units are essentially constant along the AIL and FMIL at all fluid densities and temperatures, but departures from this trend are found along the FIL at high liquid state densities near the liquid-vapor binodal. This supports growing evidence that for simple model systems with no or few internal degrees of freedom, isodynes are lines of constant excess entropy. It is shown that for the LJ fluid, ηs and D can be predicted accurately by an essentially analytic procedure from the high temperature limiting inverse power fluid values (apart from at very low densities), and this is demonstrated quite well also for the experimental argon viscosity.
Collapse
Affiliation(s)
- D M Heyes
- Department of Mechanical Engineering, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
| | - D Dini
- Department of Mechanical Engineering, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
| | - S Pieprzyk
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
| | - A C Brańka
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
| | - L Costigliola
- Department of Mechanical Engineering, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
2
|
Sampayo Puelles M, Hoyuelos M. Self-diffusion coefficient as a function of the thermodynamic factor. Phys Rev E 2024; 110:014126. [PMID: 39161025 DOI: 10.1103/physreve.110.014126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/25/2024] [Indexed: 08/21/2024]
Abstract
Much effort has been put into developing theories for dense fluids; as a result of these efforts many theories work for a certain type of particle or in a certain concentration regime. Rosenfeld proposed a dependence of the self-diffusion coefficient on the excess entropy. Our proposal is similar to Rosenfeld's in that it also attempts to describe diffusion in terms of a thermodynamic function but, instead of the excess entropy, we use the thermodynamic factor or the excess chemical potential. Simulations were taken for hard spheres and our model was fitted with two free parameters. Simulations were then carried out for a Lennard-Jones gas and our model correctly described the new data with the value of the free parameters that we had obtained for hard spheres. This is a feature of our model that we wish to emphasize, since the usual situation is that parameters have to be readjusted for different interaction potentials. An experimental xenon self-diffusion data set was used as an example of where the model can be applied, especially in the high-density regime.
Collapse
|
3
|
Huang Y, Widom M. Entropy approximations for simple fluids. Phys Rev E 2024; 109:034130. [PMID: 38632758 DOI: 10.1103/physreve.109.034130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/29/2024] [Indexed: 04/19/2024]
Abstract
Liquid state entropy formulas based on configurational probability distributions are examined for Lennard-Jones fluids across a range temperatures and densities. These formulas are based on expansions of the entropy in a series of n-body distribution functions. We focus on two special cases. One, which we term the "perfect gas" series, starts with the entropy of an ideal gas; the other, which we term the "dense liquid" series, removes a many-body contribution from the ideal gas entropy and reallocates it among the subsequent n-body terms. We show that the perfect gas series is most accurate at low density, while the dense liquid series is most accurate at high density. We propose empirical interpolation methods that are capable of connecting the two series and giving consistent predictions in most situations.
Collapse
Affiliation(s)
- Yang Huang
- Physics Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA; University of Science and Technology of China, Hefei 230026, China; and Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215213, China
| | - Michael Widom
- Physics Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
4
|
Heyes DM, Dini D, Pieprzyk S, Brańka AC. Departures from perfect isomorph behavior in Lennard-Jones fluids and solids. J Chem Phys 2023; 158:134502. [PMID: 37031156 DOI: 10.1063/5.0143651] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Isomorphs are lines on a fluid or solid phase diagram along which the microstructure is invariant on affine density scaling of the molecular coordinates. Only inverse power (IP) and hard sphere potential systems are perfectly isomorphic. This work provides new theoretical tools and criteria to determine the extent of deviation from perfect isomorphicity for other pair potentials using the Lennard-Jones (LJ) system as a test case. A simple prescription for predicting isomorphs in the fluid range using the freezing line as a reference is shown to be quite accurate for the LJ system. The shear viscosity and self-diffusion coefficient scale well are calculated using this method, which enables comments on the physical significance of the correlations found previously in the literature to be made. The virial–potential energy fluctuation and the concept of an effective IPL system and exponent, n′, are investigated, particularly with reference to the LJ freezing and melting lines. It is shown that the exponent, n′, converges to the value 12 at a high temperature as ∼ T−1/2, where T is the temperature. Analytic expressions are derived for the density, temperature, and radius derivatives of the radial distribution function along an isomorph that can be used in molecular simulation. The variance of the radial distribution function and radial fluctuation function are shown to be isomorph invariant.
Collapse
Affiliation(s)
- D. M. Heyes
- Department of Mechanical Engineering, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
| | - D. Dini
- Department of Mechanical Engineering, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
| | - S. Pieprzyk
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
| | - A. C. Brańka
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
| |
Collapse
|
5
|
Pribylov AA, Postnikov EB. Effects of mixing and molecular packing on the isobaric expansivity of mixtures of n-hexane and 1-hexanol as modelled by FT-EoS, PC-SAFT and SAFT- γ Mie. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
6
|
Effects of modification groups and defects on the desalination performance of multi-walled carbon nanotube (MWNT) membranes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Apfelbaum EM. The Line of Ideal Isothermal Compressibility. J Phys Chem B 2022; 126:2912-2920. [PMID: 35389650 DOI: 10.1021/acs.jpcb.2c01247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have considered the line along which the values of the isothermal compressibility of a system are the same as they would be for an ideal gas. It was called the κT line. Various substances and models have been studied with the use of the multi-parameter equations of states, implemented in REFPROP (Lemmon, E. W.; Bell, I. H.; Huber, M. L.; McLinden, M. O. NIST standard reference database 23: Reference fluid thermodynamic and transport properties-REFPROP, version 10.0 (National Institute of Standards and Technology, 2018)), and numerical simulations, respectively. It is shown that in the reduced variables, all κT lines can be described by the same relation following from the van der Waals equation. This similarity appears to be valid even for the systems with non-straight Zeno lines. Deviations within ∼5% are observed only near the binodals.
Collapse
Affiliation(s)
- E M Apfelbaum
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya Street 13 Bldg. 2, Moscow 125412, Russia
| |
Collapse
|
8
|
|
9
|
Craven GT, Lubbers N, Barros K, Tretiak S. Machine learning approaches for structural and thermodynamic properties of a Lennard-Jones fluid. J Chem Phys 2020; 153:104502. [DOI: 10.1063/5.0017894] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Galen T. Craven
- Theoretical Division and Center for Nonlinear Studies (CNLS), Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
| | - Nicholas Lubbers
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
| | - Kipton Barros
- Theoretical Division and Center for Nonlinear Studies (CNLS), Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
| | - Sergei Tretiak
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
| |
Collapse
|
10
|
Craven GT, Lubbers N, Barros K, Tretiak S. Ex Machina Determination of Structural Correlation Functions. J Phys Chem Lett 2020; 11:4372-4378. [PMID: 32370504 DOI: 10.1021/acs.jpclett.0c00627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Determining the structural properties of condensed-phase systems is a fundamental problem in theoretical statistical mechanics. Here we present a machine learning method that is able to predict structural correlation functions with significantly improved accuracy in comparison with traditional approaches. The usefulness of this ex machina (from the machine) approach is illustrated by predicting the radial distribution functions of two paradigmatic condensed-phase systems, a Lennard-Jones fluid and a hard-sphere fluid, and then comparing those results to the results obtained using both integral equation methods and empirically motivated analytical functions. We find that application of the developed ex machina method typically decreases the predictive error by more than an order of magnitude in comparison with traditional theoretical methods.
Collapse
Affiliation(s)
- Galen T Craven
- Theoretical Division and Center for Nonlinear Studies (CNLS), Los Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| | - Nicholas Lubbers
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| | - Kipton Barros
- Theoretical Division and Center for Nonlinear Studies (CNLS), Los Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| | - Sergei Tretiak
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| |
Collapse
|
11
|
Bell IH, Galliero G, Delage-Santacreu S, Costigliola L. An entropy scaling demarcation of gas- and liquid-like fluid behaviors. J Chem Phys 2020; 152:191102. [PMID: 33687260 DOI: 10.1063/1.5143854] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, we propose a generic and simple definition of a line separating gas-like and liquid-like fluid behaviors from the standpoint of shear viscosity. This definition is valid even for fluids such as the hard sphere and the inverse power law that exhibit a unique fluid phase. We argue that this line is defined by the location of the minimum of the macroscopically scaled viscosity when plotted as a function of the excess entropy, which differs from the popular Widom lines. For hard sphere, Lennard-Jones, and inverse-power-law fluids, such a line is located at an excess entropy approximately equal to -2/3 times Boltzmann's constant and corresponds to points in the thermodynamic phase diagram for which the kinetic contribution to viscosity is approximately half of the total viscosity. For flexible Lennard-Jones chains, the excess entropy at the minimum is a linear function of the chain length. This definition opens a straightforward route to classify the dynamical behavior of fluids from a single thermodynamic quantity obtainable from high-accuracy thermodynamic models.
Collapse
Affiliation(s)
- Ian H Bell
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - Guillaume Galliero
- Universite de Pau et des Pays de l'Adour, e2s UPPA, TOTAL, CNRS, LFCR, UMR 5150, Laboratoire des fluides complexes et leurs reservoirs, Pau, France
| | - Stéphanie Delage-Santacreu
- Universite de Pau et des Pays de l'Adour, e2s UPPA, Laboratoire de Mathematiques et de leurs Applications de Pau (IPRA, CNRS UMR5142), Pau, France
| | - Lorenzo Costigliola
- Department of Science and Environment, Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
12
|
Guérin H. First-order mean spherical approximation (FMSA) for the Buckingham Exp(αE, m) potential. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Alsaifi NM. Simulation‐based
equations of state for the
Lennard‐Jones
fluid: Apparent success and hidden failure. AIChE J 2020. [DOI: 10.1002/aic.16244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nayef M. Alsaifi
- Chemical Engineering DepartmentKing Fahd University of Petroleum & Minerals Dhahran Saudi Arabia
| |
Collapse
|
14
|
Heyes DM, Dini D, Costigliola L, Dyre JC. Transport coefficients of the Lennard-Jones fluid close to the freezing line. J Chem Phys 2019; 151:204502. [DOI: 10.1063/1.5128707] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- D. M. Heyes
- Department of Mechanical Engineering, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
| | - D. Dini
- Department of Mechanical Engineering, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
| | - L. Costigliola
- “Glass and Time,” IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - J. C. Dyre
- “Glass and Time,” IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
15
|
Sun Z, Kang Y, Kang Y. Density Functional Study on Enhancement of Modulus of Confined Fluid in Nanopores. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zongli Sun
- Science and Technology College, North China Electric Power University, Baoding 071051, P. R. China
| | - Yanshuang Kang
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Yanmei Kang
- University of International Relations, Beijing 100091, P. R. China
| |
Collapse
|
16
|
Bell IH, Messerly R, Thol M, Costigliola L, Dyre JC. Modified Entropy Scaling of the Transport Properties of the Lennard-Jones Fluid. J Phys Chem B 2019; 123:6345-6363. [PMID: 31241958 DOI: 10.1021/acs.jpcb.9b05808] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rosenfeld proposed two different scaling approaches to model the transport properties of fluids, separated by 22 years, one valid in the dilute gas, and another in the liquid phase. In this work, we demonstrate that these two limiting cases can be connected through the use of a novel approach to scaling transport properties and a bridging function. This approach, which is empirical and not derived from theory, is used to generate reference correlations for the transport properties of the Lennard-Jones 12-6 fluid of viscosity, thermal conductivity, and self-diffusion. This approach, with a very simple functional form, allows for the reproduction of the most accurate simulation data to within nearly their statistical uncertainty. The correlations are used to confirm that for the Lennard-Jones fluid the appropriately scaled transport properties are nearly monovariate functions of the excess entropy from low-density gases into the supercooled phase and up to extreme temperatures. This study represents the most comprehensive metastudy of the transport properties of the Lennard-Jones fluid to date.
Collapse
Affiliation(s)
- Ian H Bell
- Applied Chemicals and Materials Division , National Institute of Standards and Technology , Boulder , Colorado 80305 , United States
| | - Richard Messerly
- Applied Chemicals and Materials Division , National Institute of Standards and Technology , Boulder , Colorado 80305 , United States
| | - Monika Thol
- Thermodynamics , Ruhr-Universität Bochum , Universitätsstraße 150 , 44801 Bochum , Germany
| | - Lorenzo Costigliola
- DNRF Centre "Glass and Time," IMFUFA, Department of Science and Environment , Roskilde University , Postbox 260, DK-4000 Roskilde , Denmark
| | - Jeppe C Dyre
- DNRF Centre "Glass and Time," IMFUFA, Department of Science and Environment , Roskilde University , Postbox 260, DK-4000 Roskilde , Denmark
| |
Collapse
|
17
|
Sadus RJ. Molecular simulation of orthobaric isochoric heat capacities near the critical point. Phys Rev E 2019; 99:012139. [PMID: 30780235 DOI: 10.1103/physreve.99.012139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Indexed: 06/09/2023]
Abstract
A molecular simulation strategy is investigated for detecting the divergence of the isochoric heat capacity (C_{V}) on the vapor and liquid coexistence branches of a fluid near the critical point. The procedure is applied to the empirical Lennard-Jones potential and accurate state-of-the-art ab initio two-body and two-body + three-body potentials for argon. Simulations with the Lennard-Jones potential predict the divergence of C_{V}, and the phenomenon is also observed for both two-body and two-body + three body potentials. The potentials also correctly predict the crossover between vapor and liquid C_{V} values and the subcritical liquid C_{V} minimum, which marks the commencement C_{V} divergence. The effect of three-body interactions is to delay the onset of divergence to higher subcritical temperatures.
Collapse
Affiliation(s)
- Richard J Sadus
- Centre for Computational Innovations, Swinburne University of Technology, P.O. Box 218 Hawthorn, Victoria 3122, Australia
| |
Collapse
|
18
|
Sadus RJ. Intermolecular Potential-Based Equations of State from Molecular Simulation and Second Virial Coefficient Properties. J Phys Chem B 2018; 122:7757-7763. [DOI: 10.1021/acs.jpcb.8b05725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Richard J. Sadus
- Computational Science Laboratory, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| |
Collapse
|