1
|
Hockey EK, McLane N, Martí C, Duckett L, Osborn DL, Dodson LG. Direct Observation of Gas-Phase Hydroxymethylene: Photoionization and Kinetics Resulting from Methanol Photodissociation. J Am Chem Soc 2024; 146:14416-14421. [PMID: 38744681 DOI: 10.1021/jacs.4c03090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Carbene species play an integral role in high-energy chemistry, transition-metal-carbene chemistry, catalysis, photolytic formation of carbohydrates, and possibly even the formation of interstellar sugars. In 1921, "reactive formaldehyde"─now known as hydroxymethylene (HCOH)─was first implicated as an intermediate in photocatalytic processes. However, due to its transient nature, direct observation of HCOH has predominantly been attained using cryogenic isolation methods. As a result, HCOH gas-phase reactivity measurements have been limited. We directly observed HCOH using photoionization spectroscopy following UV photodissociation of methanol. Our measurements show it reacts slowly with O2 at room temperature. This work provides evidence for the formation mechanism of HCOH from CH3OH and its subsequent reactivity under gas-phase reaction conditions.
Collapse
Affiliation(s)
- Emily K Hockey
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Nathan McLane
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
| | - Carles Martí
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| | - LeAnh Duckett
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - David L Osborn
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Leah G Dodson
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
2
|
Liu T, Elliott SN, Zou M, Vansco MF, Sojdak CA, Markus CR, Almeida R, Au K, Sheps L, Osborn DL, Winiberg FAF, Percival CJ, Taatjes CA, Caravan RL, Klippenstein SJ, Lester MI. OH Roaming and Beyond in the Unimolecular Decay of the Methyl-Ethyl-Substituted Criegee Intermediate: Observations and Predictions. J Am Chem Soc 2023; 145:19405-19420. [PMID: 37623926 DOI: 10.1021/jacs.3c07126] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Alkene ozonolysis generates short-lived Criegee intermediates that are a significant source of hydroxyl (OH) radicals. This study demonstrates that roaming of the separating OH radicals can yield alternate hydroxycarbonyl products, thereby reducing the OH yield. Specifically, hydroxybutanone has been detected as a stable product arising from roaming in the unimolecular decay of the methyl-ethyl-substituted Criegee intermediate (MECI) under thermal flow cell conditions. The dynamical features of this novel multistage dissociation plus a roaming unimolecular decay process have also been examined with ab initio kinetics calculations. Experimentally, hydroxybutanone isomers are distinguished from the isomeric MECI by their higher ionization threshold and distinctive photoionization spectra. Moreover, the exponential rise of the hydroxybutanone kinetic time profile matches that for the unimolecular decay of MECI. A weaker methyl vinyl ketone (MVK) photoionization signal is also attributed to OH roaming. Complementary multireference electronic structure calculations have been utilized to map the unimolecular decay pathways for MECI, starting with 1,4 H atom transfer from a methyl or methylene group to the terminal oxygen, followed by roaming of the separating OH and butanonyl radicals in the long-range region of the potential. Roaming via reorientation and the addition of OH to the vinyl group of butanonyl is shown to yield hydroxybutanone, and subsequent C-O elongation and H-transfer can lead to MVK. A comprehensive theoretical kinetic analysis has been conducted to evaluate rate constants and branching yields (ca. 10-11%) for thermal unimolecular decay of MECI to conventional and roaming products under laboratory and atmospheric conditions, consistent with the estimated experimental yield (ca. 7%).
Collapse
Affiliation(s)
- Tianlin Liu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Sarah N Elliott
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Meijun Zou
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Michael F Vansco
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Christopher A Sojdak
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Charles R Markus
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Raybel Almeida
- Combustion Research Facility, Mailstop 9055, Sandia National Laboratories, Livermore, California 94551, United States
| | - Kendrew Au
- Combustion Research Facility, Mailstop 9055, Sandia National Laboratories, Livermore, California 94551, United States
| | - Leonid Sheps
- Combustion Research Facility, Mailstop 9055, Sandia National Laboratories, Livermore, California 94551, United States
| | - David L Osborn
- Combustion Research Facility, Mailstop 9055, Sandia National Laboratories, Livermore, California 94551, United States
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Frank A F Winiberg
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Carl J Percival
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Craig A Taatjes
- Combustion Research Facility, Mailstop 9055, Sandia National Laboratories, Livermore, California 94551, United States
| | - Rebecca L Caravan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Stephen J Klippenstein
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Marsha I Lester
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
3
|
Monteiro MLG, Mutz YDS, Francisco KDA, Rosário DKAD, Conte-Junior CA. Combined UV-C Technologies to Improve Safety and Quality of Fish and Meat Products: A Systematic Review. Foods 2023; 12:foods12101961. [PMID: 37238779 DOI: 10.3390/foods12101961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
This study aimed to identify the best UV-C combined treatments for ensuring the safety and quality of fish and meat products. A total of 4592 articles were screened in the relevant databases, and 16 were eligible studies. For fish, the most effective treatments to reduce Gram-negative and Gram-positive bacteria were UV-C at 0.5 J/cm2 + non-thermal atmospheric plasma (NTAP) for 8 min (33.83%) and 1% Verdad N6 + 0.05 J/cm2 + vacuum packaging (25.81%), respectively. An oxygen absorber with 0.102 J/cm2 was the best combined treatment, reducing lipid oxidation (65.59%), protein oxidation (48.95), color (ΔE = 4.51), and hardness changes (18.61%), in addition to a shelf-life extension of at least 2 days. For meat products, Gram-negative bacteria were more reduced by nir-infrared heating (NIR-H; 200.36 µW/cm2/nm) combined with 0.13 J/cm2 (70.82%) and 0.11 J/cm2 (52.09%). While Gram-positive bacteria by 0.13 J/cm2 with NIR-H (200.36 µW/cm2/nm), 1, 2, or 4 J/cm2 with flash pasteurization (FP) during 1.5 or 3 s, and 2 J/cm2 with FP for 0.75 s (58.89-67.77%). LAE (5%) + 0.5 J/cm2 was promising for maintaining color and texture. UV-C combined technologies seem to be a cost-effective alternative to ensure safety with little to no quality changes in fish and meat products.
Collapse
Affiliation(s)
- Maria Lúcia Guerra Monteiro
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24220-000, RJ, Brazil
| | - Yhan da Silva Mutz
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Karen de Abreu Francisco
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Denes Kaic Alves do Rosário
- Center for Agrarian Sciences and Engineering, Federal University of Espírito Santo (UFES), Alto Universitário, S/N Guararema, Alegre 29500-000, ES, Brazil
| | - Carlos Adam Conte-Junior
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24220-000, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| |
Collapse
|
4
|
Ru B, Hart CA, Mabbs R, Gozem S, Krylov AI, Sanov A. Dipole effects in the photoelectron angular distributions of the sulfur monoxide anion. Phys Chem Chem Phys 2022; 24:23367-23381. [PMID: 36129043 DOI: 10.1039/d2cp03337b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoelectron angular distributions (PADs) in SO- photodetachment using linearly polarized 355 nm (3.49 eV), 532 nm (2.33 eV), and 611 nm (2.03 eV) light were investigated via photoelectron imaging spectroscopy. The measurements at 532 and 611 nm access the X3Σ- and a1Δ electronic states of SO, whereas the measurements at 355 nm also access the b1Σ+ state. In aggregate, the photoelectron anisotropy parameter values follow the general trend with respect to electron kinetic energy (eKE) expected for π*-orbital photodetachment. The trend is similar to O2-, but the minimum of the SO- curve is shifted to smaller eKE. This shift is mainly attributed to the exit-channel interactions of the departing electron with the dipole moment of the neutral SO core, rather than the differing shapes of the SO- and O2- molecular orbitals. Of the several ab initio models considered, two approaches yield good agreement with the experiment: one representing the departing electron as a superposition of eigenfunctions of a point dipole-field Hamiltonian, and another describing the outgoing electron in terms of Coulomb waves originating from two separated charge centers, with a partial positive charge on the sulfur and an equal negative charge on the oxygen. These fundamentally related approaches support the conclusion that electron-dipole interactions in the exit channel of SO- photodetachment play an important role in shaping the PADs. While a similar conclusion was previously reached for photodetachment from σ orbitals of CN- (Hart, Lyle, Spellberg, Krylov, Mabbs, J. Phys. Chem. Lett., 2021, 12, 10086-10092), the present work includes the first extension of the dipole-field model to detachment from π* orbitals.
Collapse
Affiliation(s)
- Beverly Ru
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA.
| | - C Annie Hart
- Department of Chemistry, Washington University, Saint Louis, MO 63130, USA
| | - Richard Mabbs
- Department of Chemistry, Washington University, Saint Louis, MO 63130, USA
| | - Samer Gozem
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrei Sanov
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
5
|
Anstöter CS, Verlet JRR. Modeling the Photoelectron Angular Distributions of Molecular Anions: Roles of the Basis Set, Orbital Choice, and Geometry. J Phys Chem A 2021; 125:4888-4895. [PMID: 34042462 DOI: 10.1021/acs.jpca.1c03379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A study investigating the effect of the basis set, orbital choice, and geometry on the modeling of photoelectron angular distributions (PADs) of molecular anions is presented. Experimental and modeled PADs for a number of molecular anions, including both closed- and open-shell systems, are considered. Guidelines are suggested for chemists who wish to design calculations to capture the correct chemical physics of the anisotropy of photodetachment, while balancing the computational cost associated with larger molecular anions.
Collapse
Affiliation(s)
- Cate S Anstöter
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
6
|
Gozem S, Krylov AI. The
ezSpectra
suite: An easy‐to‐use toolkit for spectroscopy modeling. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1546] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Samer Gozem
- Department of Chemistry Georgia State University Atlanta Georgia USA
| | - Anna I. Krylov
- Department of Chemistry University of Southern California Los Angeles California USA
| |
Collapse
|
7
|
Rousso AC, Jasper AW, Ju Y, Hansen N. Extreme Low-Temperature Combustion Chemistry: Ozone-Initiated Oxidation of Methyl Hexanoate. J Phys Chem A 2020; 124:9897-9914. [PMID: 33174431 DOI: 10.1021/acs.jpca.0c07584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The accelerating chemical effect of ozone addition on the oxidation chemistry of methyl hexanoate [CH3(CH2)4C(═O)OCH3] was investigated over a temperature range from 460 to 940 K. Using an externally heated jet-stirred reactor at p = 700 Torr (residence time τ = 1.3 s, stoichiometry φ = 0.5, 80% argon dilution), we explored the relevant chemical pathways by employing molecular-beam mass spectrometry with electron and single-photon ionization to trace the temperature dependencies of key intermediates, including many hydroperoxides. In the absence of ozone, reactivity is observed in the so-called low-temperature chemistry (LTC) regime between 550 and 700 K, which is governed by hydroperoxides formed from sequential O2 addition and isomerization reactions. At temperatures above 700 K, we observed the negative temperature coefficient (NTC) regime, in which the reactivity decreases with increasing temperatures, until near 800 K, where the reactivity increases again. Upon addition of ozone (1000 ppm), the overall reactivity of the system is dramatically changed due to the time scale of ozone decomposition in comparison to fuel oxidation time scales of the mixtures at different temperatures. While the LTC regime seems to be only slightly affected by the addition of ozone with respect to the identity and quantity of the observed intermediates, we observed an increased reactivity in the intermediate NTC temperature range. Furthermore, we observed experimental evidence for an additional oxidation regime in the range near 500 K, herein referred to as the extreme low-temperature chemistry (ELTC) regime. Experimental evidence and theoretical rate constant calculations indicate that this ELTC regime is likely to be initiated by H abstraction from methyl hexanoate via O atoms, which originate from thermal O3 decomposition. The theoretical calculations show that the rate constants for methyl ester initiation via abstraction by O atoms increase dramatically with the size of the methyl ester, suggesting that ELTC is likely not important for the smaller methyl esters. Experimental evidence is provided indicating that, similar to the LTC regime, the chemistry in the ELTC regime is dominated by hydroperoxide chemistry. However, mass spectra recorded at various reactor temperatures and at different photon energies provide experimental evidence of some differences in chemical species between the ELTC and the LTC temperature ranges.
Collapse
Affiliation(s)
- Aric C Rousso
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Ahren W Jasper
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Yiguang Ju
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Nils Hansen
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| |
Collapse
|
8
|
Rosario DKA, Mutz YS, Castro VS, Bernardes PC, Rajkovic A, Conte-Junior CA. Optimization of UV-C light and lactic acid combined treatment in decontamination of sliced Brazilian dry-cured loin: Salmonella Typhimurium inactivation and physicochemical quality. Meat Sci 2020; 172:108308. [PMID: 32966953 DOI: 10.1016/j.meatsci.2020.108308] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 08/07/2020] [Accepted: 09/08/2020] [Indexed: 11/18/2022]
Abstract
This study aimed to test the effect of UV-C light (0.01-0.64 J/cm2) (UV) and lactic acid (0.1-12.9%) (LA) combined treatment on sliced Brazilian dry-cured loin (Socol, BDL) for (i) Salmonella Typhimurium reduction, (ii) physicochemical changes (color (a*, cured color, and ΔE), protein and lipid oxidation) and (iii) optimization using response surface methodology (RSM). Linear inactivation rate was achieved and UV was 2-fold more efficient than LA to inactivate S. Typhimurium. At the same time these combined technologies increased lipid (linear rate, R2adj = 0.88), protein oxidation (quadratic rate, R2adj = 0.86) and meat discoloration. Furthermore, the minimum point of the physicochemical changes was obtained using RSM, and the decontamination process was optimized. Hence, a reduction of 1.3 log cfu/g was achieved using 0.36 J/cm2 of UV and 7.7% of LA. These combined methods represent a promising industrial intervention strategy to dry-meat safety and quality.
Collapse
Affiliation(s)
- Denes K A Rosario
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Avenida Horácio Macedo, 1281, Polo de Química, bloco C, 21941-598, Ilha do Fundão, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Food Science Program, Institute of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Cidade Universitária, 21941-909, Rio de Janeiro, RJ, Brazil.
| | - Yhan S Mutz
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Avenida Horácio Macedo, 1281, Polo de Química, bloco C, 21941-598, Ilha do Fundão, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Food Science Program, Institute of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Cidade Universitária, 21941-909, Rio de Janeiro, RJ, Brazil.
| | - Vinicius S Castro
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Avenida Horácio Macedo, 1281, Polo de Química, bloco C, 21941-598, Ilha do Fundão, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Food Science Program, Institute of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Cidade Universitária, 21941-909, Rio de Janeiro, RJ, Brazil
| | - Patricia C Bernardes
- Department of Food Engineering, Federal University of Espírito Santo, Alegre, Brazil.
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Carlos A Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Avenida Horácio Macedo, 1281, Polo de Química, bloco C, 21941-598, Ilha do Fundão, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Food Science Program, Institute of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Cidade Universitária, 21941-909, Rio de Janeiro, RJ, Brazil; National Institute of Health Quality Control, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
9
|
Samanta BR, Fernando R, Rösch D, Reisler H, Osborn DL. Looking at the bigger picture: Identifying the photoproducts of pyruvic acid at 193 nm. J Chem Phys 2020; 153:074307. [DOI: 10.1063/5.0018582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- B. R. Samanta
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| | - R. Fernando
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| | - D. Rösch
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551-0969, USA
| | - H. Reisler
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| | - D. L. Osborn
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551-0969, USA
| |
Collapse
|
10
|
Hartweg S, Loison JC, Boyé-Péronne S, Gans B, Holland DMP, Garcia GA, Nahon L, Pratt ST. Photoionization of C 4H 5 Isomers. J Phys Chem A 2020; 124:6050-6060. [PMID: 32551647 DOI: 10.1021/acs.jpca.0c03317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Single-photon, photoelectron-photoion coincidence spectroscopy is used to record the mass-selected ion spectra and slow photoelectron spectra of C4H5 radicals produced by the abstraction of hydrogen atoms from three C4H6 precursors by fluorine atoms generated by a microwave discharge. Three different C4H5 isomers are identified, with the relative abundances depending on the nature of the precursor (1-butyne, 1,2-butadiene, and 1,3-butadiene). The results are compared with our previous work using 2-butyne as a precursor [Hrodmarsson, H. R. J. Phys. Chem. A 2019, 123, 1521-1528]. The slow photoelectron spectra provide new information on the three radical isomers that is in good agreement with previous experimental and theoretical results [Lang, M. J. Phys. Chem. A 2015, 119, 3995-4000; Hansen, N. J. Phys. Chem. A 2006, 110, 3670-3678]. The energy scans of the C4H5 photoionization signal are recorded with substantially better resolution and signal-to-noise ratio than those in earlier work, allowing the observation of autoionizing resonances based on excited states of the C4H5 cation. Photoelectron images recorded at several energies are also reported, providing insight into the decay processes of these excited states. Finally, in contrast to the earlier work using 2-butyne as a precursor, where H-atom abstraction was the only observed process, F- and H-atom additions to the present precursors are also observed through the detection of C4H6F, C4H5F, and C4H7.
Collapse
Affiliation(s)
- S Hartweg
- Synchrotron Soleil, L'Orme des Merisiers, Gif-sur-Yvette F-91192, France
| | - J-C Loison
- Institut des Sciences Moléculaires (ISM), CNRS, Univ. Bordeaux, 351 cours de la Libération, Talence 33400, France
| | - S Boyé-Péronne
- Institut des Sciences Moléculaires d'Orsay, CNRS, Université Paris-Saclay, Orsay F-91405, France
| | - B Gans
- Institut des Sciences Moléculaires d'Orsay, CNRS, Université Paris-Saclay, Orsay F-91405, France
| | - D M P Holland
- STFC, Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD, U.K
| | - G A Garcia
- Synchrotron Soleil, L'Orme des Merisiers, Gif-sur-Yvette F-91192, France
| | - L Nahon
- Synchrotron Soleil, L'Orme des Merisiers, Gif-sur-Yvette F-91192, France
| | - S T Pratt
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
11
|
Harper OJ, Hassenfratz M, Loison JC, Garcia GA, de Oliveira N, Hrodmarsson HR, Pratt ST, Boyé-Péronne S, Gans B. Erratum: “Quantifying the photoionization cross section of the hydroxyl radical” [J. Chem. Phys. 150, 141103 (2019)]. J Chem Phys 2020; 152:189903. [DOI: 10.1063/5.0010934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- O. J. Harper
- Institut des Sciences Moléculaires D’Orsay (ISMO), UMR 8214 CNRS, Université Paris-Sud, Université Paris-Saclay, F-91405 Orsay Cedex, France
| | - M. Hassenfratz
- Institut des Sciences Moléculaires D’Orsay (ISMO), UMR 8214 CNRS, Université Paris-Sud, Université Paris-Saclay, F-91405 Orsay Cedex, France
| | - J.-C. Loison
- Institut des Sciences Moléculaires, UMR 5255 CNRS-Université de Bordeaux, Bât.A12, 351 Cours de la Libération, F-33405 Talence Cedex, France
| | - G. A. Garcia
- Synchrotron SOLEIL, L’Orme des merisiers, Saint Aubin BP48, F-91192 Gif sur Yvette Cedex, France
| | - N. de Oliveira
- Synchrotron SOLEIL, L’Orme des merisiers, Saint Aubin BP48, F-91192 Gif sur Yvette Cedex, France
| | - H. R. Hrodmarsson
- Synchrotron SOLEIL, L’Orme des merisiers, Saint Aubin BP48, F-91192 Gif sur Yvette Cedex, France
| | - S. T. Pratt
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - S. Boyé-Péronne
- Institut des Sciences Moléculaires D’Orsay (ISMO), UMR 8214 CNRS, Université Paris-Sud, Université Paris-Saclay, F-91405 Orsay Cedex, France
| | - B. Gans
- Institut des Sciences Moléculaires D’Orsay (ISMO), UMR 8214 CNRS, Université Paris-Sud, Université Paris-Saclay, F-91405 Orsay Cedex, France
| |
Collapse
|
12
|
Wen Z, Tang X, Fittschen C, Zhang C, Wang T, Wang C, Gu X, Zhang W. Online analysis of gas-phase radical reactions using vacuum ultraviolet lamp photoionization and time-of-flight mass spectrometry. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:043201. [PMID: 32357716 DOI: 10.1063/1.5135387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
A home-made vacuum ultraviolet photoionization time-of-flight mass spectrometer has been developed and coupled to an atmospheric simulation chamber operated at atmospheric pressure and to a fast flow tube at low pressure (1-10 Torr). Gas sampling from the simulation chamber is realized directly via a capillary effusive beam, and sampling from the flow tube is via a continuous molecular beam inlet. Both devices are connected simultaneously to the ionization chamber of the mass spectrometer and can be switched in-between within minutes to study gas-phase radical reactions of atmospheric interest in a large range of reaction conditions and reaction times (from milliseconds in the flow tube to hours in the simulation chamber). A cage-shaped photoionization source combined with a commercial 10.6 eV krypton lamp has been developed to provide a high ion collection efficiency along the long light path in the cage. This way, a multiplexed detection with high sensitivity down to the sub-parts per billion volume concentration range, e.g., a limit of detection of 0.3 ppbv with an accumulation time of 60 s for benzene and 1.3 ppbv for the methyl radical, is obtained. The performance and suitability of the setup are illustrated by the study of the chlorine-initiated oxidation reaction of toluene in the atmospheric simulation chamber and in the fast flow tube. Stable products and reactive intermediates have been well-determined and their reaction dynamics are discussed.
Collapse
Affiliation(s)
- Zuoying Wen
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031 Anhui, China
| | - Xiaofeng Tang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031 Anhui, China
| | - Christa Fittschen
- University Lille, CNRS, UMR 8522, PC2A - Physicochimie des Processus de Combustion et de l'Atmosphère, F-59000 Lille, France
| | - Cuihong Zhang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031 Anhui, China
| | - Tao Wang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031 Anhui, China
| | - Chengcheng Wang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031 Anhui, China
| | - Xuejun Gu
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031 Anhui, China
| | - Weijun Zhang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031 Anhui, China
| |
Collapse
|
13
|
Huang C, Yang B, Zhang F. Calculation of the absolute photoionization cross-sections for C1-C4 Criegee intermediates and vinyl hydroperoxides. J Chem Phys 2019; 150:164305. [PMID: 31042918 DOI: 10.1063/1.5088408] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Criegee Intermediates (CIs) and their isomer Vinyl Hydroperoxides (VHPs) are crucial intermediates in the ozonolysis of alkenes. To better understand the underlying chemistry of CIs and VHPs, progress has been made to detect and identify them by photoionization mass spectrometric experiments. Further reliable quantitative information about these elusive intermediates requires their photoionization cross sections. The present work systematically investigated the near-threshold absolute photoionization cross-sections for ten C1-C4 CIs and VHPs, i.e., formaldehyde oxide (CH2OO), acetaldehyde oxide (syn-/anti-CH3CHOO), acetone oxide ((CH3)2COO), syn-CH3-anti-(cis-CH=CH2)COO, syn-CH3-anti-(trans-CH=CH2)COO and vinyl hydroperoxide (CH2CHOOH), 2-hydroperoxypropene (CH2=C(CH3)OOH), syn-CH2 = anti-(cis-CH=CH2)-COOH, syn-CH2 = anti-(trans-CH=CH2)COOH. The adiabatic ionization energies (AIEs) were calculated at the DLPNO-CCSD(T)/CBS level with uncertainties of less than 0.05 eV. The calculated AIEs for C1-C4 CIs and VHPs vary from 8.75 to 10.0 eV with the AIEs decreasing as the substitutions increase. Franck-Condon factors were calculated with the double Duschinsky approximation and the ionization spectra were obtained based on the calculated ionization energies. Pure electronic photoionization cross sections are calculated by the frozen-core Hartree-Fock (FCHF) approximation. The final determined absolute cross sections are around 4.5-6 Mb for the first and second ionization of CIs and 15-25 Mb for VHPs. It is found that the addition of a methyl group or an unsaturated vinyl substitution for the CIs does not substantially change the absolute value of their cross sections.
Collapse
Affiliation(s)
- Can Huang
- Center for Combustion Energy and Key Laboratory for Thermal Science and Power Engineering of MOE, Tsinghua University, Beijing 100084, People's Republic of China
| | - Bin Yang
- Center for Combustion Energy and Key Laboratory for Thermal Science and Power Engineering of MOE, Tsinghua University, Beijing 100084, People's Republic of China
| | - Feng Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People's Republic of China
| |
Collapse
|
14
|
Harper OJ, Hassenfratz M, Loison JC, Garcia GA, de Oliveira N, Hrodmarsson H, Pratt ST, Boyé-Péronne S, Gans B. Quantifying the photoionization cross section of the hydroxyl radical. J Chem Phys 2019; 150:141103. [DOI: 10.1063/1.5091966] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- O. J. Harper
- Institut des Sciences Moléculaires d’Orsay (ISMO), UMR 8214 CNRS, Université Paris-Sud, Université Paris-Saclay, F-91405 Orsay Cedex, France
| | - M. Hassenfratz
- Institut des Sciences Moléculaires d’Orsay (ISMO), UMR 8214 CNRS, Université Paris-Sud, Université Paris-Saclay, F-91405 Orsay Cedex, France
| | - J.-C. Loison
- Institut des Sciences Moléculaires, UMR 5255 CNRS–Université de Bordeaux, Bât.A12, 351 cours de la Libération, F-33405 Talence Cedex, France
| | - G. A. Garcia
- Synchrotron SOLEIL, L’Orme des merisiers, Saint Aubin BP48, F-91192 Gif sur Yvette Cedex, France
| | - N. de Oliveira
- Synchrotron SOLEIL, L’Orme des merisiers, Saint Aubin BP48, F-91192 Gif sur Yvette Cedex, France
| | - H.R. Hrodmarsson
- Synchrotron SOLEIL, L’Orme des merisiers, Saint Aubin BP48, F-91192 Gif sur Yvette Cedex, France
| | - S. T. Pratt
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - S. Boyé-Péronne
- Institut des Sciences Moléculaires d’Orsay (ISMO), UMR 8214 CNRS, Université Paris-Sud, Université Paris-Saclay, F-91405 Orsay Cedex, France
| | - B. Gans
- Institut des Sciences Moléculaires d’Orsay (ISMO), UMR 8214 CNRS, Université Paris-Sud, Université Paris-Saclay, F-91405 Orsay Cedex, France
| |
Collapse
|
15
|
Dyke JM. Photoionization studies of reactive intermediates using synchrotron radiation. Phys Chem Chem Phys 2019; 21:9106-9136. [DOI: 10.1039/c9cp00623k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoionization with synchrotron radiation enables sensitive and selective monitoring of reactive intermediates in environments such as flames and plasmas.
Collapse
|
16
|
Manna S, Mishra S. Vibronic structure and photoelectron angular distribution in the photoelectron spectrum of ICN. J Chem Phys 2018; 149:204308. [DOI: 10.1063/1.5050461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Soumitra Manna
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|