1
|
Bombín R, Díez Muiño R, Juaristi JI, Alducin M. Scattering of CO from Vacant-MoSe 2 with O Adsorbates: Is CO 2 Formed? THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:19661-19668. [PMID: 39600373 PMCID: PMC11587085 DOI: 10.1021/acs.jpcc.4c06306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024]
Abstract
Using ab initio molecular dynamics (AIMD) simulations, based on density functional theory that also accounts for van der Waals interactions, we study the oxidation of gas-phase CO on MoSe2 with a Se vacancy and oxygen coverage of 0.125 ML. In the equilibrium configuration, one of the O atoms is adsorbed on the vacancy and the other one atop one Se atom. Recombination of the CO molecule with the second of these O atoms to form CO2 is a highly exothermic reaction, with an energy gain of around 3 eV. The likeliness of the CO oxidation reaction on this surface is next examined by calculating hundreds of AIMD trajectories for incidence energies that suffice to overcome the energy barriers in the entrance channel of the CO oxidative recombination. In spite of this, no CO2 formation event is obtained. In most of the calculated trajectories, the incoming CO molecule is directly reflected, and in some cases, mainly at low energies, the molecules remain trapped at the surface but without reacting. As an important conclusion, our AIMD simulations show that the recombination of CO molecules with adsorbed O atoms is a very unlikely reaction in this system, despite its large exothermicity.
Collapse
Affiliation(s)
- Raúl Bombín
- Institut
des Sciences Moléculaires (ISM), Université de Bordeaux, 351 Cours de la Libération, 33405 Talence, France
| | - Ricardo Díez Muiño
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, 48009 Bilbao, Spain
| | - J. Iñaki Juaristi
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
- Departamento
de Polímeros y Materiales Avanzados: Física Química
y Tecnología, Facultad de Químicas
(UPV/EHU), Apartado 1072, 20080 Donostia-San Sebastián, Spain
- Centro
de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
| | - Maite Alducin
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
- Centro
de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
2
|
Yin H, Tang J, Yamaguchi K, Sakurai H, Tsujikawa Y, Horio M, Kondo T, Matsuda I. Adsorption of Atomic Hydrogen on Hydrogen Boride Sheets Studied by Photoelectron Spectroscopy. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4806. [PMID: 39410376 PMCID: PMC11478147 DOI: 10.3390/ma17194806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
Hydrogen boride (HB) sheets are emerging as a promising two-dimensional (2D) boron material, with potential applications as unique electrodes, substrates, and hydrogen storage materials. The 2D layered structure of HB was successfully synthesized using an ion-exchange method. The chemical bonding and structure of the HB sheets were investigated using Fourier Transform Infrared (FT-IR) spectroscopy and Transmission Electron Microscopy (TEM), respectively. X-ray photoelectron spectroscopy (XPS) was employed to study the chemical states and transformation of the components before and after atomic hydrogen adsorption, thereby elucidating the atomic hydrogen adsorption process on HB sheets. Our results indicate that, upon atomic hydrogen adsorption onto the HB sheets, the B-H-B bonds were broken and converted into B-H bonds. This research highlights and demonstrates the changes in chemical states and component transformations of the boron element on the HB sheets' surface before and after atomic hydrogen adsorption, thus providing a clearer understanding of the unique bonding and structural characteristics of the HB sheets.
Collapse
Affiliation(s)
- Heming Yin
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581, Chiba, Japan; (H.Y.)
| | - Jingmin Tang
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581, Chiba, Japan; (H.Y.)
| | - Kazuki Yamaguchi
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581, Chiba, Japan; (H.Y.)
| | - Haruto Sakurai
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581, Chiba, Japan; (H.Y.)
| | - Yuki Tsujikawa
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581, Chiba, Japan; (H.Y.)
| | - Masafumi Horio
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581, Chiba, Japan; (H.Y.)
| | - Takahiro Kondo
- Department of Materials Science and Tsukuba Research Center for Energy Materials Science, Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8573, Ibaraki, Japan;
- The Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Miyagi, Japan
| | - Iwao Matsuda
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581, Chiba, Japan; (H.Y.)
| |
Collapse
|
3
|
Michiels R, Gerrits N, Neyts E, Bogaerts A. Plasma Catalysis Modeling: How Ideal Is Atomic Hydrogen for Eley-Rideal? THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:11196-11209. [PMID: 39015417 PMCID: PMC11247482 DOI: 10.1021/acs.jpcc.4c02193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024]
Abstract
Plasma catalysis is an emerging technology, but a lot of questions about the underlying surface mechanisms remain unanswered. One of these questions is how important Eley-Rideal (ER) reactions are, next to Langmuir-Hinshelwood reactions. Most plasma catalysis kinetic models predict ER reactions to be important and sometimes even vital for the surface chemistry. In this work, we take a critical look at how ER reactions involving H radicals are incorporated in kinetic models describing CO2 hydrogenation and NH3 synthesis. To this end, we construct potential energy surface (PES) intersections, similar to elbow plots constructed for dissociative chemisorption. The results of the PES intersections are in agreement with ab initio molecular dynamics (AIMD) findings in literature while being computationally much cheaper. We find that, for the reactions studied here, adsorption is more probable than a reaction via the hot atom (HA) mechanism, which in turn is more probable than a reaction via the ER mechanism. We also conclude that kinetic models of plasma-catalytic systems tend to overestimate the importance of ER reactions. Furthermore, as opposed to what is often assumed in kinetic models, the choice of catalyst will influence the ER reaction probability. Overall, the description of ER reactions is too much "ideal" in models. Based on our findings, we make a number of recommendations on how to incorporate ER reactions in kinetic models to avoid overestimation of their importance.
Collapse
Affiliation(s)
- Roel Michiels
- Research
group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk,Antwerp BE-2610, Belgium
| | - Nick Gerrits
- Research
group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk,Antwerp BE-2610, Belgium
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, Leiden 2300 RA, The Netherlands
| | - Erik Neyts
- Research
group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk,Antwerp BE-2610, Belgium
| | - Annemie Bogaerts
- Research
group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk,Antwerp BE-2610, Belgium
| |
Collapse
|
4
|
Del Fré S, Santamaría AR, Duflot D, Basalgète R, Féraud G, Bertin M, Fillion JH, Monnerville M. Mechanism of Ultraviolet-Induced CO Desorption from CO Ice: Role of Vibrational Relaxation Highlighted. PHYSICAL REVIEW LETTERS 2023; 131:238001. [PMID: 38134796 DOI: 10.1103/physrevlett.131.238001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/13/2023] [Indexed: 12/24/2023]
Abstract
Although UV photon-induced CO ice desorption is clearly observed in many cold regions of the Universe as well as in the laboratory, the fundamental question of the mechanisms involved at the molecular scale remains debated. In particular, the exact nature of the involved energy transfers in the indirect desorption pathway highlighted in previous experiments is not explained. Using ab initio molecular dynamics simulations, we explore a new indirect desorption mechanism in which a highly vibrationally excited CO (v=40) within an aggregate of 50 CO molecules triggers the desorption of molecules at the surface. The desorption originates first from a mutual attraction between the excited molecule and the surrounding molecule(s), followed by a cascade of energy transfers, ultimately resulting in the desorption of vibrationally cold CO (∼95% in v=0). The theoretical vibrational distribution, along with the kinetic energy one, which peaks around 25 meV for CO with low rotational levels (v=0, J<7), is in excellent agreement with the results obtained from VUV laser induced desorption (157 nm) of CO (v=0, 1) probed using REMPI.
Collapse
Affiliation(s)
- Samuel Del Fré
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | | | - Denis Duflot
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - Romain Basalgète
- Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, F-75005 Paris, France
| | - Géraldine Féraud
- Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, F-75005 Paris, France
| | - Mathieu Bertin
- Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, F-75005 Paris, France
| | - Jean-Hugues Fillion
- Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, F-75005 Paris, France
| | - Maurice Monnerville
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| |
Collapse
|
5
|
Muzas A, Serrano Jiménez A, Ovčar J, Lončarić I, Alducin M, Juaristi JI. Absence of isotope effects in the photo-induced desorption of CO from saturated Pd(111) at high laser fluence. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Guo H, Poths P, Sautet P, Alexandrova AN. Oxidation Dynamics of Supported Catalytic Cu Clusters: Coupling to Fluxionality. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Han Guo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Patricia Poths
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Philippe Sautet
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
- California NanoSystems Institute, Los Angeles, California 90095, United States
| | - Anastassia N. Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
- California NanoSystems Institute, Los Angeles, California 90095, United States
| |
Collapse
|
7
|
Zhou X, Zhang Y, Yin R, Hu C, Jiang B. Neural Network Representations for Studying
Gas‐Surface
Reaction Dynamics: Beyond the
Born‐Oppenheimer
Static Surface Approximation
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Xueyao Zhou
- Hefei National Laboratory for Physical Science at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 China
| | - Yaolong Zhang
- Hefei National Laboratory for Physical Science at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 China
| | - Rongrong Yin
- Hefei National Laboratory for Physical Science at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 China
| | - Ce Hu
- Hefei National Laboratory for Physical Science at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 China
| | - Bin Jiang
- Hefei National Laboratory for Physical Science at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
8
|
Kroes GJ. Computational approaches to dissociative chemisorption on metals: towards chemical accuracy. Phys Chem Chem Phys 2021; 23:8962-9048. [PMID: 33885053 DOI: 10.1039/d1cp00044f] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We review the state-of-the-art in the theory of dissociative chemisorption (DC) of small gas phase molecules on metal surfaces, which is important to modeling heterogeneous catalysis for practical reasons, and for achieving an understanding of the wealth of experimental information that exists for this topic, for fundamental reasons. We first give a quick overview of the experimental state of the field. Turning to the theory, we address the challenge that barrier heights (Eb, which are not observables) for DC on metals cannot yet be calculated with chemical accuracy, although embedded correlated wave function theory and diffusion Monte-Carlo are moving in this direction. For benchmarking, at present chemically accurate Eb can only be derived from dynamics calculations based on a semi-empirically derived density functional (DF), by computing a sticking curve and demonstrating that it is shifted from the curve measured in a supersonic beam experiment by no more than 1 kcal mol-1. The approach capable of delivering this accuracy is called the specific reaction parameter (SRP) approach to density functional theory (DFT). SRP-DFT relies on DFT and on dynamics calculations, which are most efficiently performed if a potential energy surface (PES) is available. We therefore present a brief review of the DFs that now exist, also considering their performance on databases for Eb for gas phase reactions and DC on metals, and for adsorption to metals. We also consider expressions for SRP-DFs and briefly discuss other electronic structure methods that have addressed the interaction of molecules with metal surfaces. An overview is presented of dynamical models, which make a distinction as to whether or not, and which dissipative channels are modeled, the dissipative channels being surface phonons and electronically non-adiabatic channels such as electron-hole pair excitation. We also discuss the dynamical methods that have been used, such as the quasi-classical trajectory method and quantum dynamical methods like the time-dependent wave packet method and the reaction path Hamiltonian method. Limits on the accuracy of these methods are discussed for DC of diatomic and polyatomic molecules on metal surfaces, paying particular attention to reduced dimensionality approximations that still have to be invoked in wave packet calculations on polyatomic molecules like CH4. We also address the accuracy of fitting methods, such as recent machine learning methods (like neural network methods) and the corrugation reducing procedure. In discussing the calculation of observables we emphasize the importance of modeling the properties of the supersonic beams in simulating the sticking probability curves measured in the associated experiments. We show that chemically accurate barrier heights have now been extracted for DC in 11 molecule-metal surface systems, some of which form the most accurate core of the only existing database of Eb for DC reactions on metal surfaces (SBH10). The SRP-DFs (or candidate SRP-DFs) that have been derived show transferability in many cases, i.e., they have been shown also to yield chemically accurate Eb for chemically related systems. This can in principle be exploited in simulating rates of catalyzed reactions on nano-particles containing facets and edges, as SRP-DFs may be transferable among systems in which a molecule dissociates on low index and stepped surfaces of the same metal. In many instances SRP-DFs have allowed important conclusions regarding the mechanisms underlying observed experimental trends. An important recent observation is that SRP-DFT based on semi-local exchange DFs has so far only been successful for systems for which the difference of the metal work function and the molecule's electron affinity exceeds 7 eV. A main challenge to SRP-DFT is to extend its applicability to the other systems, which involve a range of important DC reactions of e.g. O2, H2O, NH3, CO2, and CH3OH. Recent calculations employing a PES based on a screened hybrid exchange functional suggest that the road to success may be based on using exchange functionals of this category.
Collapse
Affiliation(s)
- Geert-Jan Kroes
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
9
|
Rivero Santamaría A, Ramos M, Alducin M, Busnengo HF, Díez Muiño R, Juaristi JI. High-Dimensional Atomistic Neural Network Potential to Study the Alignment-Resolved O 2 Scattering from Highly Oriented Pyrolytic Graphite. J Phys Chem A 2021; 125:2588-2600. [PMID: 33734696 DOI: 10.1021/acs.jpca.1c00835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A high dimensional and accurate atomistic neural network potential energy surface (ANN-PES) that describes the interaction between one O2 molecule and a highly oriented pyrolytic graphite (HOPG) surface has been constructed using the open-source package (aenet). The validation of the PES is performed by paying attention to static characteristics as well as by testing its performance in reproducing previous ab initio molecular dynamics simulation results. Subsequently, the ANN-PES is used to perform quasi-classical molecular dynamics calculations of the alignment-dependent scattering of O2 from HOPG. The results are obtained for 200 meV O2 molecules with different initial alignments impinging with a polar incidence angle with respect to the surface normal of 22.5° on a thermalized (110 and 300 K) graphite surface. The choice of these initial conditions in our simulations is made to perform comparisons to recent experimental results on this system. Our results show that the scattering of O2 from the HOPG surface is a rather direct process, that the angular distributions are alignment dependent, and that the final translational energy of end-on molecules is around 20% lower than that of side-on molecules. Upon collision with the surface, the molecules that are initially aligned perpendicular to the surface become highly rotationally excited, whereas a very small change in the rotational state of the scattered molecules is observed for the initial parallel alignments. The latter confirms the energy transfer dependence on the stereodynamics for the present system. The results of our simulations are in overall agreement with the experimental observations regarding the shape of the angular distributions and the alignment dependence of the in-plane reflected molecules.
Collapse
Affiliation(s)
- Alejandro Rivero Santamaría
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain.,Donostia International Physics Center DIPC, Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| | - Maximiliano Ramos
- Instituto de Física Rosario, CONICET and Universidad Nacional de Rosario, Bv. 27 de Febrero 210 bis, 2000 Rosario, Argentina.,Facultad de Ciencias Exactas, Ingeniera y Agrimensura, Universidad Nacional de Rosario, Av. Pellegrini 250, S2000BTP Rosario, Argentina
| | - Maite Alducin
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain.,Donostia International Physics Center DIPC, Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| | - Heriberto Fabio Busnengo
- Instituto de Física Rosario, CONICET and Universidad Nacional de Rosario, Bv. 27 de Febrero 210 bis, 2000 Rosario, Argentina
| | - Ricardo Díez Muiño
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain.,Donostia International Physics Center DIPC, Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| | - J Iñaki Juaristi
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain.,Donostia International Physics Center DIPC, Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain.,Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Facultad de Químicas, Universidad del País Vasco (UPV/EHU), Apartado 1072, 20080 Donostia-San Sebastián, Spain
| |
Collapse
|
10
|
Wang Y, Nieman R, Minton TK, Guo H. Insights into adsorption, diffusion, and reactions of atomic nitrogen on a highly oriented pyrolytic graphite surface. J Chem Phys 2021; 154:074708. [PMID: 33607868 DOI: 10.1063/5.0042298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To gain insight into the nitrogen-related gas-surface reaction dynamics on carbon-based thermal protection systems of hypersonic vehicles, we have investigated the adsorption, diffusion, and reactions of atomic nitrogen, N(4S), on the (0001) face of graphite using periodic density functional theory with a dispersion corrected functional. The atomic nitrogen is found to bind with pristine graphite at a bridge site, with a barrier of 0.88 eV for diffusing to an adjacent bridge site. Its adsorption energy at defect sites is significantly higher, while that between graphene layers is lower. The formation of N2 via Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms was also investigated. In the LH pathway, the recombinative desorption of N2 proceeds via a transition state with a relatively low barrier (0.53 eV). In addition, there is a metastable surface species, which is capable of trapping the nascent N2 at low surface temperatures as a result of the large energy disposal into the N-N vibration. The desorbed N2 is highly excited in both of its translational and vibrational degrees of freedom. The ER reaction is direct and fast, and it also leads to translationally and internally excited N2. Finally, the formation of CN from a defect site is calculated to be endoergic by 2.75 eV. These results are used to rationalize the results of recent molecular beam experiments.
Collapse
Affiliation(s)
- Yingqi Wang
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Reed Nieman
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Timothy K Minton
- Ann and H. J. Smead Department of Aerospace Engineering Sciences, University of Colorado, Boulder, Colorado 80303, USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
11
|
Jiang B, Guo H. Dynamics in reactions on metal surfaces: A theoretical perspective. J Chem Phys 2019; 150:180901. [PMID: 31091904 DOI: 10.1063/1.5096869] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent advances in theoretical characterization of reaction dynamics on metal surfaces are reviewed. It is shown that the widely available density functional theory of metals and their interactions with molecules have enabled first principles theoretical models for treating surface reaction dynamics. The new theoretical tools include methods to construct high-dimensional adiabatic potential energy surfaces, to characterize nonadiabatic processes within the electronic friction models, and to describe dynamics both quantum mechanically and classically. Three prototypical surface reactions, namely, dissociative chemisorption, Eley-Rideal reactions, and recombinative desorption, are surveyed with a focus on some representative examples. While principles governing gas phase reaction dynamics may still be applicable, the presence of the surface introduces a higher level of complexity due to strong interaction between the molecular species and metal substrate. Furthermore, most of these reactive processes are impacted by energy exchange with surface phonons and/or electron-hole pair excitations. These theoretical studies help to interpret and rationalize experimental observations and, in some cases, guide experimental explorations. Knowledge acquired in these fundamental studies is expected to impact many practical problems in a wide range of interfacial processes.
Collapse
Affiliation(s)
- Bin Jiang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
12
|
Zhang Y, Zhou X, Jiang B. Bridging the Gap between Direct Dynamics and Globally Accurate Reactive Potential Energy Surfaces Using Neural Networks. J Phys Chem Lett 2019; 10:1185-1191. [PMID: 30802067 DOI: 10.1021/acs.jpclett.9b00085] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Direct dynamics simulations become increasingly popular in studying reaction dynamics for complex systems where analytical potential energy surfaces (PESs) are unavailable. Yet, the number and/or the propagation time of trajectories are often limited by high computational costs, and numerous energies and forces generated on-the-fly become wasted after simulations. We demonstrate here an example of reusing only a very small portion of existing direct dynamics data to reconstruct a 90-dimensional globally accurate reactive PES describing the interaction of CO2 with a movable Ni(100) surface based on a machine learning approach. In addition to reproducing previous results with much better statistics, we predict scattering probabilities of CO2 at the state-to-state level, which is extremely demanding for direct dynamics. We propose this unified way to investigate gaseous and gas-surface reactions of medium size, initiating with hundreds of preliminary direct dynamics trajectories, followed by low-cost and high-quality simulations on full-dimensional analytical PESs.
Collapse
Affiliation(s)
- Yaolong Zhang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Xueyao Zhou
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Bin Jiang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes , University of Science and Technology of China , Hefei , Anhui 230026 , China
| |
Collapse
|
13
|
Chen J, Zhou X, Jiang B. Eley Rideal recombination of hydrogen atoms on Cu(111): Quantitative role of electronic excitation in cross sections and product distributions. J Chem Phys 2019; 150:061101. [DOI: 10.1063/1.5086326] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jialu Chen
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xueyao Zhou
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bin Jiang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|