1
|
Williams S, Jeanneret R, Tuval I, Polin M. Confinement-induced accumulation and de-mixing of microscopic active-passive mixtures. Nat Commun 2022; 13:4776. [PMID: 35970896 PMCID: PMC9378696 DOI: 10.1038/s41467-022-32520-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding the out-of-equilibrium properties of noisy microscale systems and the extent to which they can be modulated externally, is a crucial scientific and technological challenge. It holds the promise to unlock disruptive new technologies ranging from targeted delivery of chemicals within the body to directed assembly of new materials. Here we focus on how active matter can be harnessed to transport passive microscopic systems in a statistically predictable way. Using a minimal active-passive system of weakly Brownian particles and swimming microalgae, we show that spatial confinement leads to a complex non-monotonic steady-state distribution of colloids, with a pronounced peak at the boundary. The particles’ emergent active dynamics is well captured by a space-dependent Poisson process resulting from the space-dependent motion of the algae. Based on our findings, we then realise experimentally the de-mixing of the active-passive suspension, opening the way for manipulating colloidal objects via controlled activity fields. Understanding how order emerges in active matter may facilitate macroscopic control of microscopic objects. Here, Williams et al. show how to control the transport of passive microscopic particles in presence of motile algae in conjunction with boundary-induced accumulation of microswimmers.
Collapse
Affiliation(s)
- Stephen Williams
- Department of Physics, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Raphaël Jeanneret
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005, Paris, France
| | - Idan Tuval
- Departament de Física, Universitat de les Illes Balears, 07071, Palma de Mallorca, Spain.,Instituto Mediterráneo de Estudios Avanzados, IMEDEA, Miquel Marques 21, 07190, Esporles, Spain
| | - Marco Polin
- Department of Physics, University of Warwick, Coventry, CV4 7AL, United Kingdom. .,Departament de Física, Universitat de les Illes Balears, 07071, Palma de Mallorca, Spain. .,Instituto Mediterráneo de Estudios Avanzados, IMEDEA, Miquel Marques 21, 07190, Esporles, Spain.
| |
Collapse
|
2
|
Nabil M, Frankowski A, Orosa A, Fuller A, Nourhani A. Modulating drift dynamics of circle swimmers by periodic potentials. Phys Rev E 2022; 105:054610. [PMID: 35706311 DOI: 10.1103/physreve.105.054610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
We propose a method to modulate the drifting motion of overdamped circle swimmers in steady fluid flows by means of static sinusoidal potentials. Using Langevin formalism, we study drift velocity as a function of potential strength and wavelength with and without diffusional motion. Drift velocity is essentially quantized without diffusion, but in the presence of noise, the displacement per cycle has a continuous range. As a function of dimensionless potential wave number, domains of damped oscillatory and plateau regimes are observed in the drift velocity diagram. At weak potential and fluid velocity less than powered velocity, there is also a regime where drift velocity exceeds the fluid velocity. Methods based on these results can be used to separate biological and artificial circle swimmers based on their dynamical properties.
Collapse
Affiliation(s)
- Mohammad Nabil
- Department of Mechanical Engineering, University of Akron, Akron, Ohio 44325, USA
- Biomimicry Research and Innovation Center, University of Akron, Akron, Ohio 44325, USA
| | - Andrew Frankowski
- Department of Mechanical Engineering, University of Akron, Akron, Ohio 44325, USA
- Biomimicry Research and Innovation Center, University of Akron, Akron, Ohio 44325, USA
| | - Ashton Orosa
- Department of Mechanical Engineering, University of Akron, Akron, Ohio 44325, USA
- Biomimicry Research and Innovation Center, University of Akron, Akron, Ohio 44325, USA
| | - Andrew Fuller
- Department of Mechanical Engineering, University of Akron, Akron, Ohio 44325, USA
- Biomimicry Research and Innovation Center, University of Akron, Akron, Ohio 44325, USA
| | - Amir Nourhani
- Department of Mechanical Engineering, University of Akron, Akron, Ohio 44325, USA
- Biomimicry Research and Innovation Center, University of Akron, Akron, Ohio 44325, USA
- Departments of Biology, Mathematics, and Chemical, Biomolecular, and Corrosion Engineering, University of Akron, Akron, Ohio 44325, USA
| |
Collapse
|
3
|
Khelfa B, Korbmacher R, Schadschneider A, Tordeux A. Heterogeneity-induced lane and band formation in self-driven particle systems. Sci Rep 2022; 12:4768. [PMID: 35306506 PMCID: PMC8934355 DOI: 10.1038/s41598-022-08649-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/08/2022] [Indexed: 01/23/2023] Open
Abstract
The collective motion of interacting self-driven particles describes many types of coordinated dynamics and self-organisation. Prominent examples are alignment or lane formation which can be observed alongside other ordered structures and nonuniform patterns. In this article, we investigate the effects of different types of heterogeneity in a two-species self-driven particle system. We show that heterogeneity can generically initiate segregation in the motion and identify two heterogeneity mechanisms. Longitudinal lanes parallel to the direction of motion emerge when the heterogeneity statically lies in the agent characteristics (quenched disorder). While transverse bands orthogonal to the motion direction arise from dynamic heterogeneity in the interactions (annealed disorder). In both cases, non-linear transitions occur as the heterogeneity increases, from disorder to ordered states with lane or band patterns. These generic features are observed for a first and a second order motion model and different characteristic parameters related to particle speed and size. Simulation results show that the collective dynamics occur in relatively short time intervals, persist stationary, and are partly robust against random perturbations.
Collapse
Affiliation(s)
- Basma Khelfa
- School for Mechanical Engineering and Safety Engineering, University of Wuppertal, Wuppertal, Germany
| | - Raphael Korbmacher
- School for Mechanical Engineering and Safety Engineering, University of Wuppertal, Wuppertal, Germany
| | | | - Antoine Tordeux
- School for Mechanical Engineering and Safety Engineering, University of Wuppertal, Wuppertal, Germany.
| |
Collapse
|
4
|
Breoni D, Schmiedeberg M, Löwen H. Active Brownian and inertial particles in disordered environments: Short-time expansion of the mean-square displacement. Phys Rev E 2020; 102:062604. [PMID: 33465967 DOI: 10.1103/physreve.102.062604] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
We consider an active Brownian particle moving in a disordered two-dimensional energy or motility landscape. The averaged mean-square displacement (MSD) of the particle is calculated analytically within a systematic short-time expansion. As a result, for overdamped particles, both an external random force field and disorder in the self-propulsion speed induce ballistic behavior adding to the ballistic regime of an active particle with sharp self-propulsion speed. Spatial correlations in the force and motility landscape contribute only to the cubic and higher-order powers in time for the MSD. Finally, for inertial particles two superballistic regimes are found where the scaling exponent of the MSD with time is α=3 and α=4. We confirm our theoretical predictions by computer simulations. Moreover, they are verifiable in experiments on self-propelled colloids in random environments.
Collapse
Affiliation(s)
- Davide Breoni
- Institut für Theoretische Physik II: Weiche Materie, Heinrich Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Michael Schmiedeberg
- Institut für Theoretische Physik 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Sebtosheikh M, Naji A. Effective interactions mediated between two permeable disks in an active fluid. Sci Rep 2020; 10:15570. [PMID: 32968107 PMCID: PMC7511345 DOI: 10.1038/s41598-020-71209-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/12/2020] [Indexed: 01/30/2023] Open
Abstract
We study steady-state properties of a bath of active Brownian particles (ABPs) in two dimensions in the presence of two fixed, permeable (hollow) disklike inclusions, whose interior and exterior regions can exhibit mismatching motility (self-propulsion) strengths for the ABPs. We show that such a discontinuous motility field strongly affects spatial distribution of ABPs and thus also the effective interaction mediated between the inclusions through the active bath. Such net interactions arise from soft interfacial repulsions between ABPs that sterically interact with and/or pass through permeable membranes assumed to enclose the inclusions. Both regimes of repulsion and attractive (albeit with different mechanisms) are reported and summarized in overall phase diagrams.
Collapse
Affiliation(s)
- Mahmoud Sebtosheikh
- School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran
| | - Ali Naji
- School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran
| |
Collapse
|
6
|
Affiliation(s)
- Olivier Dauchot
- Laboratoire Gulliver, UMR 7083, ESPCI, 10 Rue Vauquelin, 75231 Paris Cedex 05, France
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
7
|
Lozano C, Bechinger C. Diffusing wave paradox of phototactic particles in traveling light pulses. Nat Commun 2019; 10:2495. [PMID: 31175288 PMCID: PMC6555803 DOI: 10.1038/s41467-019-10535-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/17/2019] [Indexed: 12/17/2022] Open
Abstract
Cells navigate through complex surroundings by following cues from their environment. A prominent example is Dictyostelium, which is directed by chemotaxis towards regions with higher concentrations. In the presence of traveling chemical waves, however, amoebae migrate counter to the running wave. Such behavior, referred to as diffusing wave paradox, suggests the existence of adaptation and directional memory. Here we experimentally investigate the response of phototactic self-propelled microparticles to traveling light-pulses. Despite their entirely memory-less (i.e., strictly local) response to the environment, we observe the same phenomenological behavior, i.e., particle motion counter to the pulse direction. Our findings are supported by a minimal model which considers active particle reorientations within local light gradients. The complex and robust behavior of synthetic active particles to spatially and temporally varying stimuli enables new strategies for achieving collective behavior and can be used for the design of micro-robotic systems with limited signal-processing capabilities.
Collapse
Affiliation(s)
- Celia Lozano
- Fachbereich Physik, Universität Konstanz, D-78457, Konstanz, Germany
| | - Clemens Bechinger
- Fachbereich Physik, Universität Konstanz, D-78457, Konstanz, Germany.
| |
Collapse
|