1
|
Mao Y, Wickström SA. Mechanical state transitions in the regulation of tissue form and function. Nat Rev Mol Cell Biol 2024; 25:654-670. [PMID: 38600372 DOI: 10.1038/s41580-024-00719-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 04/12/2024]
Abstract
From embryonic development, postnatal growth and adult homeostasis to reparative and disease states, cells and tissues undergo constant changes in genome activity, cell fate, proliferation, movement, metabolism and growth. Importantly, these biological state transitions are coupled to changes in the mechanical and material properties of cells and tissues, termed mechanical state transitions. These mechanical states share features with physical states of matter, liquids and solids. Tissues can switch between mechanical states by changing behavioural dynamics or connectivity between cells. Conversely, these changes in tissue mechanical properties are known to control cell and tissue function, most importantly the ability of cells to move or tissues to deform. Thus, tissue mechanical state transitions are implicated in transmitting information across biological length and time scales, especially during processes of early development, wound healing and diseases such as cancer. This Review will focus on the biological basis of tissue-scale mechanical state transitions, how they emerge from molecular and cellular interactions, and their roles in organismal development, homeostasis, regeneration and disease.
Collapse
Affiliation(s)
- Yanlan Mao
- Laboratory for Molecular Cell Biology, University College London, London, UK.
- Institute for the Physics of Living Systems, University College London, London, UK.
| | - Sara A Wickström
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
2
|
Mezher M, Dumbali S, Fenn I, Lamb C, Miller C, Sharmin S, Cabe JI, Bejar-Padilla V, Conway D, Maruthamuthu V. Vinculin is essential for sustaining normal levels of endogenous forces at cell-cell contacts. Biophys J 2023; 122:4518-4527. [PMID: 38350000 PMCID: PMC10719050 DOI: 10.1016/j.bpj.2023.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/11/2023] [Accepted: 10/25/2023] [Indexed: 02/15/2024] Open
Abstract
Transmission of cell-generated (i.e., endogenous) tension at cell-cell contacts is crucial for tissue shape changes during morphogenesis and adult tissue repair in tissues such as epithelia. E-cadherin-based adhesions at cell-cell contacts are the primary means by which endogenous tension is transmitted between cells. The E-cadherin-β-catenin-α-catenin complex mechanically couples to the actin cytoskeleton (and thereby the cell's contractile machinery) both directly and indirectly. However, the key adhesion constituents required for substantial endogenous force transmission at these adhesions in cell-cell contacts are unclear. Due to the role of α-catenin as a mechanotransducer that recruits vinculin at cell-cell contacts, we expected α-catenin to be essential for sustaining normal levels of force transmission. Instead, using the traction force imbalance method to determine the inter-cellular force at a single cell-cell contact between cell pairs, we found that it is vinculin that is essential for sustaining normal levels of endogenous force transmission, with absence of vinculin decreasing the inter-cellular tension by over 50%. Our results constrain the potential mechanical pathways of force transmission at cell-cell contacts and suggest that vinculin can transmit forces at E-cadherin adhesions independent of α-catenin, possibly through β-catenin. Furthermore, we tested the ability of lateral cell-cell contacts to withstand external stretch and found that both vinculin and α-catenin are essential to maintain cell-cell contact stability under external forces.
Collapse
Affiliation(s)
- Mazen Mezher
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, Virginia
| | - Sandeep Dumbali
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, Virginia
| | - Ian Fenn
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, Virginia
| | - Carter Lamb
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, Virginia
| | - Conrad Miller
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, Virginia
| | - Saika Sharmin
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, Virginia
| | - Jolene I Cabe
- Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Vidal Bejar-Padilla
- Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Daniel Conway
- Biomedical Engineering, The Ohio State University, Columbus, Ohio
| | - Venkat Maruthamuthu
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, Virginia.
| |
Collapse
|
3
|
Bush J, Cabe JI, Conway D, Maruthamuthu V. E-cadherin adhesion dynamics as revealed by an accelerated force ramp are dependent upon the presence of α-catenin. Biochem Biophys Res Commun 2023; 682:308-315. [PMID: 37837751 PMCID: PMC10615569 DOI: 10.1016/j.bbrc.2023.09.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/16/2023]
Abstract
Tissue remodeling and shape changes often rely on force-induced cell rearrangements occurring via cell-cell contact dynamics. Epithelial cell-cell contact shape changes are particularly dependent upon E-cadherin adhesion dynamics which are directly influenced by cell-generated and external forces. While both the mobility of E-cadherin adhesions and their adhesion strength have been reported before, it is not clear how these two aspects of E-cadherin adhesion dynamics are related. Here, using magnetic pulling cytometry, we applied an accelerated force ramp on the E-cadherin adhesion between an E-cadherin-coated magnetic microbead and an epithelial cell to ascertain this relationship. Our approach enables the determination of the adhesion strength and force-dependent mobility of individual adhesions, which revealed a direct correlation between these key characteristics. Since α-catenin has previously been reported to play a role in both E-cadherin mobility and adhesion strength when studied independently, we also probed epithelial cells in which α-catenin has been knocked out. We found that, in the absence of α-catenin, E-cadherin adhesions not only had lower adhesion strength, as expected, but were also more mobile. We observed that α-catenin was required for the recovery of strained cell-cell contacts and propose that the adhesion strength and force-dependent mobility of E-cadherin adhesions act in tandem to regulate cell-cell contact homeostasis. Our approach introduces a method which relates the force-dependent adhesion mobility to adhesion strength and highlights the morphological role played by α-catenin in E-cadherin adhesion dynamics.
Collapse
Affiliation(s)
- Joshua Bush
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, VA, 23529, USA; Bioengineering, George Mason University, Fairfax, VA, 22030, USA
| | - Jolene I Cabe
- Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Daniel Conway
- Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Venkat Maruthamuthu
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, VA, 23529, USA.
| |
Collapse
|
4
|
Bush J, Cabe JI, Conway D, Maruthamuthu V. α-Catenin Dependent E-cadherin Adhesion Dynamics as Revealed by an Accelerated Force Ramp. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.550975. [PMID: 37645773 PMCID: PMC10461907 DOI: 10.1101/2023.07.28.550975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Tissue remodeling and shape changes often rely on force-induced cell rearrangements occurring via cell-cell contact dynamics. Epithelial cell-cell contact shape changes are particularly dependent upon E-cadherin adhesion dynamics which are directly influenced by cell-generated and external forces. While both the mobility of E-cadherin adhesions and their adhesion strength have been reported before, it is not clear how these two aspects of E-cadherin adhesion dynamics are related. Here, using magnetic pulling cytometry, we applied an accelerated force ramp on the E-cadherin adhesion between an E-cadherin-coated magnetic microbead and an epithelial cell to ascertain this relationship. Our approach enables the determination of the adhesion strength and force-dependent mobility of individual adhesions, which revealed a direct correlation between these key characteristics. Since α-catenin has previously been reported to play a role in both E-cadherin mobility and adhesion strength when studied independently, we also probed epithelial cells in which α-catenin has been knocked out. We found that, in the absence of α-catenin, E-cadherin adhesions not only had lower adhesion strength, as expected, but were also more mobile. We observed that α-catenin was required for the recovery of strained cell-cell contacts and propose that the adhesion strength and force-dependent mobility of E-cadherin adhesions act in tandem to regulate cell-cell contact homeostasis. Our approach introduces a method which relates the force-dependent adhesion mobility to adhesion strength and highlights the morphological role played by α-catenin in E-cadherin adhesion dynamics.
Collapse
Affiliation(s)
- Joshua Bush
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, VA 23529 USA
- Bioengineering, George Mason University, Fairfax, VA 22030
| | - Jolene I. Cabe
- Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Daniel Conway
- Biomedical Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Venkat Maruthamuthu
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, VA 23529 USA
| |
Collapse
|
5
|
Libring S, Enríquez Á, Lee H, Solorio L. In Vitro Magnetic Techniques for Investigating Cancer Progression. Cancers (Basel) 2021; 13:4440. [PMID: 34503250 PMCID: PMC8430481 DOI: 10.3390/cancers13174440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/28/2021] [Accepted: 08/29/2021] [Indexed: 12/24/2022] Open
Abstract
Worldwide, there are currently around 18.1 million new cancer cases and 9.6 million cancer deaths yearly. Although cancer diagnosis and treatment has improved greatly in the past several decades, a complete understanding of the complex interactions between cancer cells and the tumor microenvironment during primary tumor growth and metastatic expansion is still lacking. Several aspects of the metastatic cascade require in vitro investigation. This is because in vitro work allows for a reduced number of variables and an ability to gather real-time data of cell responses to precise stimuli, decoupling the complex environment surrounding in vivo experimentation. Breakthroughs in our understanding of cancer biology and mechanics through in vitro assays can lead to better-designed ex vivo precision medicine platforms and clinical therapeutics. Multiple techniques have been developed to imitate cancer cells in their primary or metastatic environments, such as spheroids in suspension, microfluidic systems, 3D bioprinting, and hydrogel embedding. Recently, magnetic-based in vitro platforms have been developed to improve the reproducibility of the cell geometries created, precisely move magnetized cell aggregates or fabricated scaffolding, and incorporate static or dynamic loading into the cell or its culture environment. Here, we will review the latest magnetic techniques utilized in these in vitro environments to improve our understanding of cancer cell interactions throughout the various stages of the metastatic cascade.
Collapse
Affiliation(s)
- Sarah Libring
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; (S.L.); (Á.E.)
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Ángel Enríquez
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; (S.L.); (Á.E.)
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
- Center for Implantable Devices, Purdue University, West Lafayette, IN 47907, USA
| | - Hyowon Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; (S.L.); (Á.E.)
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
- Center for Implantable Devices, Purdue University, West Lafayette, IN 47907, USA
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; (S.L.); (Á.E.)
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
6
|
Versatile and High-throughput Force Measurement Platform for Dorsal Cell Mechanics. Sci Rep 2019; 9:13286. [PMID: 31527594 PMCID: PMC6746792 DOI: 10.1038/s41598-019-49592-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 08/28/2019] [Indexed: 01/17/2023] Open
Abstract
We present a high-throughput microfluidics technique facilitating in situ measurements of cell mechanics parameters at the dorsal side of the cell, including molecular binding strengths, local traction forces, and viscoelastic properties. By adjusting the flow rate, the force magnitude exerted on the cell can be modulated ranging from ~14 pN to 2 nN to perturb various force-dependent processees in cells. Time-lapse images were acquired to record events due to such perturbation. The values of various mechanical parameters are subsequently obtained by single particle tracking. Up to 50 events can be measured simultaneously in a single experiment. Integrating the microfluidic techniques with the analytic framework established in computational fluid dynamics, our method is physiologically relevant, reliable, economic and efficient.
Collapse
|