1
|
Zantop AW, Stark H. Emergent collective dynamics of pusher and puller squirmer rods: swarming, clustering, and turbulence. SOFT MATTER 2022; 18:6179-6191. [PMID: 35822601 DOI: 10.1039/d2sm00449f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We study the interplay of steric and hydrodynamic interactions in suspensions of elongated microswimmers by simulating the full hydrodynamics of squirmer rods in the quasi two-dimensional geometry of a Hele-Shaw cell. To create pusher or puller-type squirmer rods, we concentrate the surface slip-velocity field more to the back or to the front of the rod and thereby are able to tune the rod's force-dipole strength. We study a wide range of aspect ratios and area fractions and provide corresponding state diagrams. The flow field of pusher-type squirmer rods destabilizes ordered structures and favors the disordered state at small area fractions and aspect ratios. Only when steric interactions become relevant, we observe a turbulent and dynamic cluster state, while for large aspect ratios a single swarm and jammed cluster occurs. The power spectrum of the turbulent state shows two distinct energy cascades at small and large wave numbers with power-law scaling and non-universal exponents. Pullers show a strong tendency to form swarms instead of the disordered state found for neutral and pusher rods. At large area fractions a dynamic cluster is observed and at larger aspect ratio a single swarm or jammed cluster occurs.
Collapse
Affiliation(s)
- Arne W Zantop
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany.
| | - Holger Stark
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany.
| |
Collapse
|
2
|
Clopés J, Gompper G, Winkler RG. Alignment and propulsion of squirmer pusher-puller dumbbells. J Chem Phys 2022; 156:194901. [DOI: 10.1063/5.0091067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The properties of microswimmer dumbbells composed of pusher-puller pairs are investigated by mesoscale hydrodynamic simulations employing the multiparticle collision dynamics approach for the fluid. An individual microswimmer is represented by a squirmer, and various active-stress combinations in a dumbbell are considered. The squirmers are connected by a bond, which does not impose any geometrical restriction on the individual rotational motion. Our simulations reveal a strong influence of the squirmers' flow fields on the orientation of their propulsion directions, their fluctuations, and the swimming behavior of a dumbbell. The properties of pusher-puller pairs with equal magnitude of the active stresses dependent only weakly on the stress magnitude. This is similar to dumbbells of microswimmers without hydrodynamic interactions. However, for non-equal stress magnitudes, the active stress implies strong orientational correlations of the swimmers' propulsion directions with respect to each other as well as the bond vector. The orientational coupling is most pronounced for pairs with large differences of the active stress magnitude. The alignment of the squirmer propulsion directions with respect to each other is preferentially orthogonal in dumbbells with a strong pusher and weak puller, and antiparallel in the opposite case when the puller dominates. These strong correlations affect the active motion of dumbbells which is faster for strong pushers and slower for strong pullers.
Collapse
Affiliation(s)
| | - Gerhard Gompper
- Institute of Biological Information Processing, Forschungszentrum Jülich GmbH, Germany
| | - Roland G. Winkler
- Institute for Advanced Simulation, Forschungszentrum Jülich, Germany
| |
Collapse
|
3
|
Rühle F, Zantop AW, Stark H. Gyrotactic cluster formation of bottom-heavy squirmers. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:26. [PMID: 35304659 PMCID: PMC8933315 DOI: 10.1140/epje/s10189-022-00183-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Squirmers that are bottom-heavy experience a torque that aligns them along the vertical so that they swim upwards. In a suspension of many squirmers, they also interact hydrodynamically via flow fields that are initiated by their swimming motion and by gravity. Swimming under the combined action of flow field vorticity and gravitational torque is called gyrotaxis. Using the method of multi-particle collision dynamics, we perform hydrodynamic simulations of a many-squirmer system floating above the bottom surface. Due to gyrotaxis they exhibit pronounced cluster formation with increasing gravitational torque. The clusters are more volatile at low values but compactify to smaller clusters at larger torques. The mean distance between clusters is mainly controlled by the gravitational torque and not the global density. Furthermore, we observe that neutral squirmers form clusters more easily, whereas pullers require larger gravitational torques due to their additional force-dipole flow fields. We do not observe clustering for pusher squirmers. Adding a rotlet dipole to the squirmer flow field induces swirling clusters. At high gravitational strengths, the hydrodynamic interactions with the no-slip boundary create an additional vertical alignment for neutral squirmers, which also supports cluster formation.
Collapse
Affiliation(s)
- Felix Rühle
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, D-10623, Berlin, Germany.
| | - Arne W Zantop
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, D-10623, Berlin, Germany
| | - Holger Stark
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, D-10623, Berlin, Germany
| |
Collapse
|
4
|
Liebchen B, Mukhopadhyay AK. Interactions in active colloids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:083002. [PMID: 34788232 DOI: 10.1088/1361-648x/ac3a86] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
The past two decades have seen a remarkable progress in the development of synthetic colloidal agents which are capable of creating directed motion in an unbiased environment at the microscale. These self-propelling particles are often praised for their enormous potential to self-organize into dynamic nonequilibrium structures such as living clusters, synchronized super-rotor structures or self-propelling molecules featuring a complexity which is rarely found outside of the living world. However, the precise mechanisms underlying the formation and dynamics of many of these structures are still barely understood, which is likely to hinge on the gaps in our understanding of how active colloids interact. In particular, besides showing comparatively short-ranged interactions which are well known from passive colloids (Van der Waals, electrostatic etc), active colloids show novel hydrodynamic interactions as well as phoretic and substrate-mediated 'osmotic' cross-interactions which hinge on the action of the phoretic field gradients which are induced by the colloids on other colloids in the system. The present article discusses the complexity and the intriguing properties of these interactions which in general are long-ranged, non-instantaneous, non-pairwise and non-reciprocal and which may serve as key ingredients for the design of future nonequilibrium colloidal materials. Besides providing a brief overview on the state of the art of our understanding of these interactions a key aim of this review is to emphasize open key questions and corresponding open challenges.
Collapse
Affiliation(s)
- Benno Liebchen
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Aritra K Mukhopadhyay
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
5
|
Zantop AW, Stark H. Multi-particle collision dynamics with a non-ideal equation of state. II. Collective dynamics of elongated squirmer rods. J Chem Phys 2021; 155:134904. [PMID: 34624984 DOI: 10.1063/5.0064558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Simulations of flow fields around microscopic objects typically require methods that both solve the Navier-Stokes equations and also include thermal fluctuations. One such method popular in the field of soft-matter physics is the particle-based simulation method of multi-particle collision dynamics (MPCD). However, in contrast to the typically incompressible real fluid, the fluid of the traditional MPCD methods obeys the ideal-gas equation of state. This can be problematic because most fluid properties strongly depend on the fluid density. In a recent article, we proposed an extended MPCD algorithm and derived its non-ideal equation of state and an expression for the viscosity. In the present work, we demonstrate its accuracy and efficiency for the simulations of the flow fields of single squirmers and of the collective dynamics of squirmer rods. We use two exemplary squirmer-rod systems for which we compare the outcome of the extended MPCD method to the well-established MPCD version with an Andersen thermostat. First, we explicitly demonstrate the reduced compressibility of the MPCD fluid in a cluster of squirmer rods. Second, for shorter rods, we show the interesting result that in simulations with the extended MPCD method, dynamic swarms are more pronounced and have a higher polar order. Finally, we present a thorough study of the state diagram of squirmer rods moving in the center plane of a Hele-Shaw geometry. From a small to large aspect ratio and density, we observe a disordered state, dynamic swarms, a single swarm, and a jammed cluster, which we characterize accordingly.
Collapse
Affiliation(s)
- Arne W Zantop
- Institute of Theoretical Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Holger Stark
- Institute of Theoretical Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| |
Collapse
|
6
|
An effective and efficient model of the near-field hydrodynamic interactions for active suspensions of bacteria. Proc Natl Acad Sci U S A 2021; 118:2100145118. [PMID: 34260387 PMCID: PMC8285906 DOI: 10.1073/pnas.2100145118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Active suspensions of microswimmers demonstrate novel emergent behaviors (self-organizations, active turbulence, etc.) on macroscopic length scales. For such systems with, minimally, thousands of microswimmers, direct numerical simulations of the hydrodynamic interactions are computationally infeasible, and reduced models are needed. We demonstrated that existing models are not satisfactory in describing the hydrodynamic interactions for microswimmers in close proximity with even qualitatively erroneous predictions, indicating a pressing need for an adequate model. We propose a model that is both physically effective and computationally efficient in describing such hydrodynamics. The main novelty of our model is the description of hydrodynamic interactions through a resistance tensor, as opposed to an effective steric interaction in existing models. Near-field hydrodynamic interactions in active fluids are essential to determine many important emergent behaviors observed, but have not been successfully modeled so far. In this work, we propose an effective model capturing the essence of the near-field hydrodynamic interactions through a tensorial coefficient of resistance, validated numerically by a pedagogic model system consisting of an Escherichia coli bacterium and a passive sphere. In a critical test case that studies the scattering angle of the bacterium–sphere pair dynamics, we prove that the near-field hydrodynamics can make a qualitative difference even for this simple two-body system: Calculations based on the proposed model reveal a region in parameter space where the bacterium is trapped by the passive sphere, a phenomenon that is regularly observed in experiments but cannot be explained by any existing model. In the end, we demonstrate that our model also leads to efficient simulation of active fluids with tens of thousands of bacteria, sufficiently large for investigations of many emergent behaviors.
Collapse
|
7
|
Deußen B, Jayaram A, Kummer F, Wang Y, Speck T, Oberlack M. High-order simulation scheme for active particles driven by stress boundary conditions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:244004. [PMID: 33862605 DOI: 10.1088/1361-648x/abf8cf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
We study the dynamics and interactions of elliptic active particles in a two dimensional solvent. The particles are self-propelled through prescribing a fluid stress at one half of the fluid-particle boundary. The fluid is treated explicitly solving the Stokes equation through a discontinuous Galerkin scheme, which allows to simulate strictly incompressible fluids. We present numerical results for a single particle and give an outlook on how to treat suspensions of interacting active particles.
Collapse
Affiliation(s)
- B Deußen
- Chair of Fluid Dynamics, Department of Mechanical Engineering, Technical University of Darmstadt, Germany
| | - A Jayaram
- Institute of Physics, Johannes Gutenberg-University Mainz, Germany
| | - F Kummer
- Chair of Fluid Dynamics, Department of Mechanical Engineering, Technical University of Darmstadt, Germany
| | - Y Wang
- Chair of Fluid Dynamics, Department of Mechanical Engineering, Technical University of Darmstadt, Germany
| | - T Speck
- Institute of Physics, Johannes Gutenberg-University Mainz, Germany
| | - M Oberlack
- Chair of Fluid Dynamics, Department of Mechanical Engineering, Technical University of Darmstadt, Germany
| |
Collapse
|
8
|
Clopés J, Gompper G, Winkler RG. Hydrodynamic interactions in squirmer dumbbells: active stress-induced alignment and locomotion. SOFT MATTER 2020; 16:10676-10687. [PMID: 33089276 DOI: 10.1039/d0sm01569e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hydrodynamic interactions are fundamental for the dynamics of swimming self-propelled particles. Specifically, bonds between microswimmers enforce permanent spatial proximity and, thus, enhance emergent correlations by microswimmer-specific flow fields. We employ the squirmer model to study the swimming behavior of microswimmer dumbbells by mesoscale hydrodynamic simulations, where the squirmers' rotational motion is geometrically unrestricted. An important aspect of the applied particle-based simulation approach-the multiparticle collision dynamics method-is the intrinsic account for thermal fluctuations. We find a strong effect of active stress on the motility of dumbbells. In particular, pairs of strong pullers exhibit orders of magnitude smaller swimming efficiency than pairs of pushers. This is a consequence of the inherent thermal fluctuations in combination with the strong coupling of the squirmers' rotational motion, which implies non-exponentially decaying auto- and cross-correlation functions of the propulsion directions, and active stress-dependent characteristic decay times. As a consequence, specific stationary-state relative alignments of the squirmer propulsion directions emerge, where pullers are preferentially aligned in an antiparallel manner along the bond vector, whereas pushers are preferentially aligned normal to the bond vector with a relative angle of approximately 60° at weak active stress, and one of the propulsion directions is aligned with the bond at strong active stress. The distinct differences between dumbbells comprised of pusher or pullers suggest means to control microswimmer assemblies for future microbot applications.
Collapse
Affiliation(s)
- Judit Clopés
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, D-52425 Jülich, Germany.
| | | | | |
Collapse
|
9
|
Sprenger AR, Shaik VA, Ardekani AM, Lisicki M, Mathijssen AJTM, Guzmán-Lastra F, Löwen H, Menzel AM, Daddi-Moussa-Ider A. Towards an analytical description of active microswimmers in clean and in surfactant-covered drops. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2020; 43:58. [PMID: 32920676 DOI: 10.1140/epje/i2020-11980-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/10/2020] [Indexed: 05/24/2023]
Abstract
Geometric confinements are frequently encountered in the biological world and strongly affect the stability, topology, and transport properties of active suspensions in viscous flow. Based on a far-field analytical model, the low-Reynolds-number locomotion of a self-propelled microswimmer moving inside a clean viscous drop or a drop covered with a homogeneously distributed surfactant, is theoretically examined. The interfacial viscous stresses induced by the surfactant are described by the well-established Boussinesq-Scriven constitutive rheological model. Moreover, the active agent is represented by a force dipole and the resulting fluid-mediated hydrodynamic couplings between the swimmer and the confining drop are investigated. We find that the presence of the surfactant significantly alters the dynamics of the encapsulated swimmer by enhancing its reorientation. Exact solutions for the velocity images for the Stokeslet and dipolar flow singularities inside the drop are introduced and expressed in terms of infinite series of harmonic components. Our results offer useful insights into guiding principles for the control of confined active matter systems and support the objective of utilizing synthetic microswimmers to drive drops for targeted drug delivery applications.
Collapse
Affiliation(s)
- Alexander R Sprenger
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany.
| | - Vaseem A Shaik
- School of Mechanical Engineering, Purdue University, 47907, West Lafayette, IN, USA
| | - Arezoo M Ardekani
- School of Mechanical Engineering, Purdue University, 47907, West Lafayette, IN, USA
| | - Maciej Lisicki
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Arnold J T M Mathijssen
- Department of Bioengineering, Stanford University, 443 Via Ortega, 94305, Stanford, CA, USA
- Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, 19104, Philadelphia, PA, USA
| | - Francisca Guzmán-Lastra
- Centro de Investigación DAiTA Lab, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Av. Manuel Montt 367, Providencia, Santiago de Chile, Chile
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| | - Andreas M Menzel
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Abdallah Daddi-Moussa-Ider
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
10
|
Zantop AW, Stark H. Squirmer rods as elongated microswimmers: flow fields and confinement. SOFT MATTER 2020; 16:6400-6412. [PMID: 32582901 DOI: 10.1039/d0sm00616e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microswimmers or active elements, such as bacteria and active filaments, have an elongated shape, which determines their individual and collective dynamics. There is still a need to identify what role long-range hydrodynamic interactions play in their fascinating dynamic structure formation. We construct rods of different aspect ratios using several spherical squirmer model swimmers. With the help of the mesoscale simulation method of multi-particle collision dynamics we analyze the flow fields of these squirmer rods both in a bulk fluid and in Hele-Shaw geometries of different slab widths. Based on the hydrodynamic multipole expansion either for bulk or confinement between two parallel plates, we categorize the different multipole contributions of neutral as well as pusher-type squirmer rods. We demonstrate how confinement alters the radial decay of the flow fields for a given force or source multipole moment compared to the bulk fluid.
Collapse
Affiliation(s)
- Arne W Zantop
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany.
| | | |
Collapse
|
11
|
Affiliation(s)
- Olivier Dauchot
- Laboratoire Gulliver, UMR 7083, ESPCI, 10 Rue Vauquelin, 75231 Paris Cedex 05, France
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
12
|
Daddi-Moussa-Ider A, Kurzthaler C, Hoell C, Zöttl A, Mirzakhanloo M, Alam MR, Menzel AM, Löwen H, Gekle S. Frequency-dependent higher-order Stokes singularities near a planar elastic boundary: Implications for the hydrodynamics of an active microswimmer near an elastic interface. Phys Rev E 2019; 100:032610. [PMID: 31639990 DOI: 10.1103/physreve.100.032610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Indexed: 06/10/2023]
Abstract
The emerging field of self-driven active particles in fluid environments has recently created significant interest in the biophysics and bioengineering communities owing to their promising future for biomedical and technological applications. These microswimmers move autonomously through aqueous media, where under realistic situations they encounter a plethora of external stimuli and confining surfaces with peculiar elastic properties. Based on a far-field hydrodynamic model, we present an analytical theory to describe the physical interaction and hydrodynamic couplings between a self-propelled active microswimmer and an elastic interface that features resistance toward shear and bending. We model the active agent as a superposition of higher-order Stokes singularities and elucidate the associated translational and rotational velocities induced by the nearby elastic boundary. Our results show that the velocities can be decomposed in shear and bending related contributions which approach the velocities of active agents close to a no-slip rigid wall in the steady limit. The transient dynamics predict that contributions to the velocities of the microswimmer due to bending resistance are generally more pronounced than those due to shear resistance. Bending can enhance (suppress) the velocities resulting from higher-order singularities whereas the shear related contribution decreases (increases) the velocities. Most prominently, we find that near an elastic interface of only energetic resistance toward shear deformation, such as that of an elastic capsule designed for drug delivery, a swimming bacterium undergoes rotation of the same sense as observed near a no-slip wall. In contrast to that, near an interface of only energetic resistance toward bending, such as that of a fluid vesicle or liposome, we find a reversed sense of rotation. Our results provide insight into the control and guidance of artificial and synthetic self-propelling active microswimmers near elastic confinements.
Collapse
Affiliation(s)
- Abdallah Daddi-Moussa-Ider
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Christina Kurzthaler
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Christian Hoell
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Andreas Zöttl
- Institute for Theoretical Physics, Technische Universität Wien, Wiedner Hauptstraße 8-10, 1040 Wien, Austria
| | - Mehdi Mirzakhanloo
- Department of Mechanical Engineering, University of California, Berkeley, California 94720, USA
| | - Mohammad-Reza Alam
- Department of Mechanical Engineering, University of California, Berkeley, California 94720, USA
| | - Andreas M Menzel
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Stephan Gekle
- Biofluid Simulation and Modeling, Theoretische Physik VI, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|
13
|
Hoell C, Löwen H, Menzel AM. Multi-species dynamical density functional theory for microswimmers: Derivation, orientational ordering, trapping potentials, and shear cells. J Chem Phys 2019. [DOI: 10.1063/1.5099554] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Christian Hoell
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Andreas M. Menzel
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
14
|
Kuron M, Stärk P, Holm C, de Graaf J. Hydrodynamic mobility reversal of squirmers near flat and curved surfaces. SOFT MATTER 2019; 15:5908-5920. [PMID: 31282522 DOI: 10.1039/c9sm00692c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Self-propelled particles have been experimentally shown to orbit spherical obstacles and move along surfaces. Here, we theoretically and numerically investigate this behavior for a hydrodynamic squirmer interacting with spherical objects and flat walls using three different methods of approximately solving the Stokes equations: The method of reflections, which is accurate in the far field; lubrication theory, which describes the close-to-contact behavior; and a lattice Boltzmann solver that accurately accounts for near-field flows. The method of reflections predicts three distinct behaviors: orbiting/sliding, scattering, and hovering, with orbiting being favored for lower curvature as in the literature. Surprisingly, it also shows backward orbiting/sliding for sufficiently strong pushers, caused by fluid recirculation in the gap between the squirmer and the obstacle leading to strong forces opposing forward motion. Lubrication theory instead suggests that only hovering is a stable point for the dynamics. We therefore employ lattice Boltzmann to resolve this discrepancy and we qualitatively reproduce the richer far-field predictions. Our results thus provide insight into a possible mechanism of mobility reversal mediated solely through hydrodynamic interactions with a surface.
Collapse
Affiliation(s)
- Michael Kuron
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany.
| | | | | | | |
Collapse
|