1
|
Tschurikow X, Gadzekpo A, Tran MP, Chatterjee R, Sobucki M, Zaburdaev V, Göpfrich K, Hilbert L. Amphiphiles Formed from Synthetic DNA-Nanomotifs Mimic the Stepwise Dispersal of Transcriptional Clusters in the Cell Nucleus. NANO LETTERS 2023; 23:7815-7824. [PMID: 37586706 PMCID: PMC10510709 DOI: 10.1021/acs.nanolett.3c01301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/28/2023] [Indexed: 08/18/2023]
Abstract
Stem cells exhibit prominent clusters controlling the transcription of genes into RNA. These clusters form by a phase-separation mechanism, and their size and shape are controlled via an amphiphilic effect of transcribed genes. Here, we construct amphiphile-nanomotifs purely from DNA, and we achieve similar size and shape control for phase-separated droplets formed from fully synthetic, self-interacting DNA-nanomotifs. Increasing amphiphile concentrations induce rounding of droplets, prevent droplet fusion, and, at high concentrations, cause full dispersal of droplets. Super-resolution microscopy data obtained from zebrafish embryo stem cells reveal a comparable transition for transcriptional clusters with increasing transcription levels. Brownian dynamics and lattice simulations further confirm that the addition of amphiphilic particles is sufficient to explain the observed changes in shape and size. Our work reproduces key aspects of transcriptional cluster formation in biological cells using relatively simple DNA sequence-programmable nanostructures, opening novel ways to control the mesoscopic organization of synthetic nanomaterials.
Collapse
Affiliation(s)
- Xenia Tschurikow
- Institute
of Biological and Chemical Systems, Karlsruhe
Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
- Zoological
Institute, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Aaron Gadzekpo
- Institute
of Biological and Chemical Systems, Karlsruhe
Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
- Zoological
Institute, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Mai P. Tran
- Center
for Molecular Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
- Max
Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Rakesh Chatterjee
- Max
Planck Zentrum für Physik und Medizin, Erlangen 91058, Germany
- Chair
of Mathematics in Life Sciences, Friedrich-Alexander
Universität Erlangen-Nürnberg, Erlangen 91058, Germany
| | - Marcel Sobucki
- Institute
of Biological and Chemical Systems, Karlsruhe
Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Vasily Zaburdaev
- Max
Planck Zentrum für Physik und Medizin, Erlangen 91058, Germany
- Chair
of Mathematics in Life Sciences, Friedrich-Alexander
Universität Erlangen-Nürnberg, Erlangen 91058, Germany
| | - Kerstin Göpfrich
- Center
for Molecular Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
- Max
Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Lennart Hilbert
- Institute
of Biological and Chemical Systems, Karlsruhe
Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
- Zoological
Institute, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| |
Collapse
|
2
|
Tran MP, Chatterjee R, Dreher Y, Fichtler J, Jahnke K, Hilbert L, Zaburdaev V, Göpfrich K. A DNA Segregation Module for Synthetic Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2202711. [PMID: 35971190 DOI: 10.1002/smll.202202711] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/01/2022] [Indexed: 06/15/2023]
Abstract
The bottom-up construction of an artificial cell requires the realization of synthetic cell division. Significant progress has been made toward reliable compartment division, yet mechanisms to segregate the DNA-encoded informational content are still in their infancy. Herein, droplets of DNA Y-motifs are formed by liquid-liquid phase separation. DNA droplet segregation is obtained by cleaving the linking component between two populations of DNA Y-motifs. In addition to enzymatic cleavage, photolabile sites are introduced for spatio-temporally controlled DNA segregation in bulk as well as in cell-sized water-in-oil droplets and giant unilamellar lipid vesicles (GUVs). Notably, the segregation process is slower in confinement than in bulk. The ionic strength of the solution and the nucleobase sequences are employed to regulate the segregation dynamics. The experimental results are corroborated in a lattice-based theoretical model which mimics the interactions between the DNA Y-motif populations. Altogether, engineered DNA droplets, reconstituted in GUVs, can represent a strategy toward a DNA segregation module within bottom-up assembled synthetic cells.
Collapse
Affiliation(s)
- Mai P Tran
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Department of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Rakesh Chatterjee
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 11, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
| | - Yannik Dreher
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, 69120, Heidelberg, Germany
| | - Julius Fichtler
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
| | - Kevin Jahnke
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, 69120, Heidelberg, Germany
| | - Lennart Hilbert
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Zoological Institute, Department of Systems Biology / Bioinformatics, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Vasily Zaburdaev
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 11, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
| | - Kerstin Göpfrich
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
3
|
Granek O, Kafri Y, Tailleur J. Anomalous Transport of Tracers in Active Baths. PHYSICAL REVIEW LETTERS 2022; 129:038001. [PMID: 35905354 DOI: 10.1103/physrevlett.129.038001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/23/2021] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
We derive the long-time dynamics of a tracer immersed in a one-dimensional active bath. In contrast to previous studies, we find that the damping and noise correlations possess long-time tails with exponents that depend on the tracer symmetry. For generic tracers, shape asymmetry induces ratchet effects that alter fluctuations and lead to superdiffusion and friction that grows with time when the tracer is dragged at a constant speed. In the singular limit of a completely symmetric tracer, we recover normal diffusion and finite friction. Furthermore, for small symmetric tracers, the active contribution to the friction becomes negative: active particles enhance motion rather than oppose it. These results show that, in low-dimensional systems, the motion of a passive tracer in an active bath cannot be modeled as a persistent random walker with a finite correlation time.
Collapse
Affiliation(s)
- Omer Granek
- Department of Physics, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yariv Kafri
- Department of Physics, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Julien Tailleur
- Université de Paris, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
| |
Collapse
|
4
|
Rizkallah P, Sarracino A, Bénichou O, Illien P. Microscopic Theory for the Diffusion of an Active Particle in a Crowded Environment. PHYSICAL REVIEW LETTERS 2022; 128:038001. [PMID: 35119883 DOI: 10.1103/physrevlett.128.038001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
We calculate the diffusion coefficient of an active tracer in a schematic crowded environment, represented as a lattice gas of passive particles with hardcore interactions. Starting from the master equation of the problem, we put forward a closure approximation that goes beyond trivial mean field and provides the diffusion coefficient for an arbitrary density of crowders in the system. We show that our approximation is accurate for a very wide range of parameters, and that it correctly captures numerous nonequilibrium effects, which are the signature of the activity in the system. In addition to the determination of the diffusion coefficient of the tracer, our approach allows us to characterize the perturbation of the environment induced by the displacement of the active tracer. Finally, we consider the asymptotic regimes of low and high densities, in which the expression of the diffusion coefficient of the tracer becomes explicit, and which we argue to be exact.
Collapse
Affiliation(s)
- Pierre Rizkallah
- Sorbonne Université, CNRS, Laboratoire de Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), 4 Place Jussieu, 75005 Paris, France
| | - Alessandro Sarracino
- Dipartimento di Ingegneria, Università della Campania "Luigi Vanvitelli", 81031 Aversa (CE), Italy
| | - Olivier Bénichou
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France
| | - Pierre Illien
- Sorbonne Université, CNRS, Laboratoire de Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
5
|
Biswas A, Cruz JM, Parmananda P, Das D. First passage of an active particle in the presence of passive crowders. SOFT MATTER 2020; 16:6138-6144. [PMID: 32555827 DOI: 10.1039/d0sm00350f] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We experimentally study the stochastic transport of a self-propelled camphor boat, driven by Marangoni forces, through a crowd of passive paper discs floating on water. We analyze the statistics of the first passage times of the active particle to travel from the center of a circular container to its boundary. While the mean times rise monotonically as a function of the covered area fraction φ of the passive paper discs, their fluctuations show a non-monotonic behavior - being higher at low and high value of φ compared to intermediate values. The reason is traced to an interplay of two distinct sources of fluctuations - one intrinsic to the dynamics, while the other due to the crowding.
Collapse
Affiliation(s)
- Animesh Biswas
- Indian Institute of Technology Bombay, Powai-400076, Mumbai, India.
| | - J M Cruz
- Indian Institute of Technology Bombay, Powai-400076, Mumbai, India.
| | - P Parmananda
- Indian Institute of Technology Bombay, Powai-400076, Mumbai, India.
| | - Dibyendu Das
- Indian Institute of Technology Bombay, Powai-400076, Mumbai, India.
| |
Collapse
|
6
|
Martin RW, Zwanikken JW. Controlling the structure and mixing properties of anisotropic active particles with the direction of self-propulsion. SOFT MATTER 2019; 15:7757-7764. [PMID: 31482905 DOI: 10.1039/c9sm01120j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the search for advanced materials active particles could offer unique structural and functional properties, with tunable time-dependent characteristics. We demonstrate here that the direction of self-propulsion, relative to the particle orientation, may be as influential for the phase behavior as the pair interactions are for passive particles, and enable dynamic properties that are not available to passive systems. We perform simulations on ensembles of self-propelled squares, and find that squares that self-propel in the direction perpendicular to a side rapidly reach a steady state with a characteristic cluster distribution, positional order, and well-defined diffusion constant. After tuning the direction towards a corner, the particles form large and dense clusters that show a transient collective motion, and display remarkable fluctuations over long time scales, with a distinct periodicity. Clusters of these particles appear unstable beyond a critical size, and susceptible to a catastrophic disintegration. Directionality is found to effect equally sharp transitions in the mixing properties of active squares and passive squares, and the behavior of the passive ensemble. We relate directionality to the collision dynamics and the resulting reaction network of clusters, evolved by a Kinetic Monte Carlo algorithm, to correlate propulsion direction to the observed phase behavior. Understanding this behavior could offer new design rules for programmable materials, and grant further insights in the dynamic processes that nature employs for self-assembly.
Collapse
Affiliation(s)
- Robert W Martin
- Department of Physics and Applied Physics, University of Massachusetts, Lowell, USA.
| | | |
Collapse
|
7
|
Affiliation(s)
- Olivier Dauchot
- Laboratoire Gulliver, UMR 7083, ESPCI, 10 Rue Vauquelin, 75231 Paris Cedex 05, France
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| |
Collapse
|