1
|
Moch K, Gainaru C, Böhmer R. Dielectric and Shear-Mechanical "Humps" in the Nonlinear Response of Polar Glassformers. J Phys Chem B 2024; 128:8846-8854. [PMID: 39213502 DOI: 10.1021/acs.jpcb.4c04528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Many glassformers display electrorheological effects and a pronounced maximum in their frequency dependent nonlinear dielectric response. The latter so-called "hump" feature was often linked to correlated-particle motions and, so far, was not explored in the large-perturbation mechanical response of viscous liquids. To first clarify the electro-viscoelastic coupling in the linear domain, using the modified Gemant, DiMarzio, and Bishop model, it is demonstrated how the small-amplitude shear mechanical response of S-methoxy-PC, a derivative of propylene carbonate, can be related to its complex dielectric permittivity. Then, in the nonlinear regime, a "hump" feature is identified in the rheological third-order shear modulus of S-methoxy-PC and of another polar glassformer, propylene glycol. Thus, the observation of a "hump" in the cubic response of viscous liquids does not necessarily rely on the application of electrical fields.
Collapse
Affiliation(s)
- Kevin Moch
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Catalin Gainaru
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| |
Collapse
|
2
|
Moch K, Gainaru C, Böhmer R. Nonlinear susceptibilities and higher-order responses related to physical aging: Wiener-Volterra approach and extended Tool-Narayanaswamy-Moynihan models. J Chem Phys 2024; 161:014502. [PMID: 38949281 DOI: 10.1063/5.0207122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024] Open
Abstract
Large-amplitude thermal excursions imposed on deeply supercooled liquids modulate the nonlinear time evolution of their structural rearrangements. The consequent aftereffects are treated within a Wiener-Volterra expansion in laboratory time that allows one to calculate the associated physical-aging and thermal response functions. These responses and the corresponding higher-harmonic susceptibilities are illustrated using calculations based on the Tool-Narayanaswamy-Moynihan (TNM) model. The conversion from laboratory to material time is thoroughly discussed. Similarities and differences to field-induced higher-harmonic susceptibilities are illustrated using Lissajous and Cole-Cole plots and discussed in terms of aging nonlinearity parameters. For the Lissajous plots, banana-type shapes emerge, while the Cole-Cole plots display cardioidic and other visually appealing patterns. For application beyond the regime in which conventional single-parameter aging concepts work, the Wiener-Volterra material-time-series is introduced as the central tool. Calculations and analyses within this general framework in conjunction with suitable choices of higher-order memory kernels and employing correspondingly extended TNM models yield at least qualitative agreement with recent large-perturbation physical aging experiments. Implications for differential scanning calorimetry and related methods are discussed. The introduced concepts and analyses provide a solid foundation for a generalized description of nonlinear thermal out-of-equilibrium dynamics of glass forming materials, differing from the nonlinear responses known from rheology and dielectric spectroscopy.
Collapse
Affiliation(s)
- Kevin Moch
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Catalin Gainaru
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| |
Collapse
|
3
|
Hoffmann L, Beerwerth J, Moch K, Böhmer R. Phenol, the simplest aromatic monohydroxy alcohol, displays a faint Debye-like process when mixed with a nonassociating liquid. Phys Chem Chem Phys 2023; 25:24042-24059. [PMID: 37654228 DOI: 10.1039/d3cp02774k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Solvated in propylene carbonate, viscous phenol is studied using dielectric spectroscopy and shear rheology. In addition, several oxygen-17 and deuteron nuclear magnetic resonance (NMR) techniques are applied to specifically isotope labeled equimolar mixtures. Quantum chemical calculations are used to check the electrical field gradient at phenol's oxygen site. The chosen combination of NMR methods facilitates the selective examination of potentially hydrogen-bond related contributions as well as those dominated by the structural relaxation. Taken together the present results for phenol in equimolar mixtures with the van der Waals liquid propylene carbonate provide evidence for the existence of a very weak Debye-like process that originates from ringlike supramolecular associates.
Collapse
Affiliation(s)
- Lars Hoffmann
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Joachim Beerwerth
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Kevin Moch
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| |
Collapse
|
4
|
Czaderna-Lekka A, Tarnacka M, Wojnarowska Z, Hachuła B, Paluch M, Kamiński K. On the relationship between the Debye process in dielectric response and a dissociation-association phenomenon in phenyl alcohols. Phys Chem Chem Phys 2023; 25:14590-14597. [PMID: 37191250 DOI: 10.1039/d3cp00816a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In this paper, we have examined a series of phenyl-substituted primary monohydroxy alcohols (phenyl alcohols, PhAs), from ethanol to hexanol by means of dielectric and Fourier transform infrared (FTIR) spectroscopies supported by the mechanical investigations. The combination of both dielectric and mechanical data allows calculation of the energy barrier, Ea, for dissociation by the Rubinstein approach developed to describe the dynamical properties of self-assembling macromolecules. It was observed that the determined activation energy remains constant, |Ea,RM| ∼ 12.9-14.2 kJ mol-1, regardless of the molecular weight of the examined material. Surprisingly, the obtained values agree very well with Ea of the dissociation process determined from the FTIR data analysed within the van't Hoff relationship, where Ea,vH ∼ 9.13-13.64 kJ mol-1. Thus, the observed agreement between Ea determined by both applied approaches clearly implies that in the case of the examined series of PhAs, the dielectric Debye-like process is governed by the association-dissociation phenomenon as proposed by the transient chain model.
Collapse
Affiliation(s)
- Anna Czaderna-Lekka
- August Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.
| | - Magdalena Tarnacka
- August Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.
| | - Zaneta Wojnarowska
- August Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.
| | - Barbara Hachuła
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Marian Paluch
- August Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.
| | - Kamil Kamiński
- August Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.
| |
Collapse
|
5
|
Ge S, Carden GP, Samanta S, Li B, Popov I, Cao PF, Sokolov AP. Associating Polymers in the Strong Interaction Regime: Validation of the Bond Lifetime Renormalization Model. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Sirui Ge
- Department of Material Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Gregory Peyton Carden
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Subarna Samanta
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Bingrui Li
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Ivan Popov
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Peng-Fei Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Alexei P. Sokolov
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
6
|
Mikkelsen M, Gabriel JP, Hecksher T. Dielectric and Shear Mechanical Spectra of Propanols: The Influence of Hydrogen-Bonded Structures. J Phys Chem B 2023; 127:371-377. [PMID: 36563319 DOI: 10.1021/acs.jpcb.2c07120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We present a dielectric and shear mechanical study of 1-propanol and three phenylpropanols. Contrary to other monoalcohols, the phenylpropanols do not show a bimodal behavior in their dielectric response, but instead show a single, rather narrow process. Combined dielectric and light scattering spectra (Böhmer, T.; et al. J. Phys. Chem. B 2019, 123, 10959) have shown that this single peak may be separated into a self- and a cross-correlation part, thus indicating that phenylpropanols do display features originating from hydrogen-bonded structures. The shear mechanical spectra support that interpretation, demonstrating a subtle, yet clear, low-frequency polymer-like mode, similar to what is found in other monoalcohols. An analysis of the characteristic time scales found in the spectra shows that shear alpha relaxation is faster than the dielectric alpha and that time scale separation of the dielectric Debye and alpha processes is temperature independent and nearly identical in all the phenylpropanols.
Collapse
Affiliation(s)
- Mathias Mikkelsen
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, Roskilde 4000, Denmark
| | - Jan Philipp Gabriel
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, Roskilde 4000, Denmark
| | - Tina Hecksher
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, Roskilde 4000, Denmark
| |
Collapse
|
7
|
Bolle J, Bierwirth SP, Požar M, Perera A, Paulus M, Münzner P, Albers C, Dogan S, Elbers M, Sakrowski R, Surmeier G, Böhmer R, Tolan M, Sternemann C. Isomeric effects in structure formation and dielectric dynamics of different octanols. Phys Chem Chem Phys 2021; 23:24211-24221. [PMID: 34693949 DOI: 10.1039/d1cp02468j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The understanding of the microstructure of associated liquids promoted by hydrogen-bonding and constrained by steric hindrance is highly relevant in chemistry, physics, biology and for many aspects of daily life. In this study we use a combination of X-ray diffraction, dielectric spectroscopy and molecular dynamics simulations to reveal temperature induced changes in the microstructure of different octanol isomers, i.e., linear 1-octanol and branched 2-, 3- and 4-octanol. In all octanols, the hydroxyl groups form the basis of chain-, cyclic- or loop-like bonded structures that are separated by outwardly directed alkyl chains. This clustering is analyzed through the scattering pre-peaks observed from X-ray scattering and simulations. The charge ordering which pilots OH aggregation can be linked to the strength of the Debye process observed in dielectric spectroscopy. Interestingly, all methods used here converge to the same interpretation: as one moves from 1-octanol to the branched octanols, the cluster structure evolves from loose large aggregates to a larger number of smaller, tighter aggregates. All alcohols exhibit a peculiar temperature dependence of both the pre-peak and Debye process, which can be understood as a change in microstructure promoted by chain association with increased chain length possibly assisted by ring-opening effects. All these results tend to support the intuitive picture of the entropic constraint provided by branching through the alkyl tails and highlight its capital entropic role in supramolecular assembly.
Collapse
Affiliation(s)
- Jennifer Bolle
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44227 Dortmund, Germany.
| | - S Peter Bierwirth
- Fakultät Physik, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Martina Požar
- University of Split, Faculty of Science, Ruera Boškovića 33, 21000, Split, Croatia
| | - Aurélien Perera
- Sorbonne Université, Laboratoire de Physique Théorique de la Matiére Condensée (UMR CNRS 7600), 4 Place Jussieu, F75252, Paris cedex 05, France
| | - Michael Paulus
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44227 Dortmund, Germany.
| | - Philipp Münzner
- Fakultät Physik, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Christian Albers
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44227 Dortmund, Germany.
| | - Susanne Dogan
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44227 Dortmund, Germany.
| | - Mirko Elbers
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44227 Dortmund, Germany.
| | - Robin Sakrowski
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44227 Dortmund, Germany.
| | - Göran Surmeier
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44227 Dortmund, Germany.
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Metin Tolan
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44227 Dortmund, Germany.
| | - Christian Sternemann
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44227 Dortmund, Germany.
| |
Collapse
|
8
|
Moch K, Bierwirth SP, Gainaru C, Böhmer R. First- and third-order shear nonlinearities across the structural relaxation peak of the deeply supercooled pharmaceutical liquid indomethacin. J Chem Phys 2021; 155:134901. [PMID: 34624979 DOI: 10.1063/5.0065572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Nonlinear rheological properties of viscous indomethacin are studied in the frequency range of its structural relaxation, that is, in a range so far inaccessible to standard techniques involving medium-amplitude oscillatory shear amplitudes. The first- and third-order nonlinearity parameters thus recorded using a sequence of small and large shear excitations in a time efficient manner are compared with predictions from rheological models. By properly phase cycling the shear amplitudes, build-up and decay transients are recorded. Analogous to electrical-field experiments, these transients yield direct access to the structural relaxation times under linear and nonlinear shearing conditions. To demonstrate the broader applicability of the present approach, transient analyses are also carried out for the glass formers glycerol, ortho-terphenyl, and acetaminophen.
Collapse
Affiliation(s)
- Kevin Moch
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - S Peter Bierwirth
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Catalin Gainaru
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| |
Collapse
|
9
|
Arrese-Igor S, Alegría A, Arbe A, Colmenero J. Insights into the non-exponential behavior of the dielectric Debye-like relaxation in monoalcohols. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Xu D, Feng S, Wang JQ, Wang LM, Richert R. Entropic Nature of the Debye Relaxation in Glass-Forming Monoalcohols. J Phys Chem Lett 2020; 11:5792-5797. [PMID: 32608239 DOI: 10.1021/acs.jpclett.0c01499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The dynamics and thermodynamics of the Debye and structural (α) relaxations in isomeric monoalcohols near the glass transition temperature Tg are explored using dielectric and calorimetric techniques. The α relaxation strength at Tg is found to correlate with the heat capacity increment, but no thermal signals can be detected to link to the Debye relaxation. We also observed that the activation energy of the Debye relaxation in monoalcohols is quantitatively correlated with that of the α relaxation at the kinetic Tg, sharing the dynamic behavior of the Rouse modes found in polymers. The experimental results together with the analogy to the Rouse modes in polymers suggest that the Debye process in monoalcohols is an entropic process manifested by the total dipole fluctuation of the supramolecular structures, which is triggered and driven by the α relaxation.
Collapse
Affiliation(s)
- Di Xu
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Shidong Feng
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Jun-Qiang Wang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Li-Min Wang
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - R Richert
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
11
|
Bierwirth SP, Honorio G, Gainaru C, Böhmer R. First-Order and Third-Order Nonlinearities from Medium-Amplitude Oscillatory Shearing of Hydrogen-Bonded Polymers and Other Viscoelastic Materials. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Gabriel Honorio
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Catalin Gainaru
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| |
Collapse
|
12
|
Honorio G, Bierwirth SP, Gainaru C, Böhmer R. Nonlinear electrical and rheological spectroscopies identify structural and supramolecular relaxations in a model peptide. SOFT MATTER 2019; 15:4334-4345. [PMID: 31073564 DOI: 10.1039/c9sm00434c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Supercooled liquid secondary amides display an electrical absorption peak characterized by an almost Debye-like shape, indicative of a close-to-exponential polarization response. This response, believed to be supramolecular in nature, is so enormously intense that the amide's structural process, contributing only a few percent to the total relaxation strength, is hard to resolve reliably using standard dielectric spectroscopy. To overcome this issue, nonlinear dielectric spectroscopy involving field-induced structural recovery and temperature-induced physical aging, was applied near the calorimetric glass transition of a mixture of N-methylformamide and N-ethylacetamide. Without the need to rely on cumbersome deconvolution procedures, it is thus demonstrated that the supramolecular response is by a factor of 6 slower than the structural relaxation. Conversely, in linear rheological experiments only the structural relaxation could be resolved, but not the supramolecular one. However, medium-amplitude oscillatory shear experiments carried out at 160 K do reveal the supramolecular process. Hence, the combination of linear and nonlinear mechanical measurements corroborates the dielectrically uncovered spectral separation of the two processes.
Collapse
Affiliation(s)
- Gabriel Honorio
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | | | | | | |
Collapse
|