1
|
Yuan W, Xiong Z, Zeng M, Zhou Z, Wang Z, Yang J, Zhao L, Pan Y, Qi F. Advances and Challenges in Speciation Measurement and Microkinetic Modeling for Gas-Solid Heterogeneous Catalysis. J Phys Chem A 2025; 129:423-438. [PMID: 39754581 DOI: 10.1021/acs.jpca.4c06404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Microkinetic modeling of heterogeneous catalysis serves as an efficient tool bridging atom-scale first-principles calculations and macroscale industrial reactor simulations. Fundamental understanding of the microkinetic mechanism relies on a combination of experimental and theoretical studies. This Perspective presents an overview of the latest progress of experimental and microkinetic modeling approaches applied to gas-solid catalytic kinetics. Then, opportunities and challenges are presented based on recent research progress in gas-solid catalysis and combustion chemistry. For experimental approaches, the importance of ideal catalytic reactors, structured catalysts, and precise elementary rate measurements is emphasized. Additionally, integrating spatiotemporally resolved operando gas-phase diagnostics with surface-adsorbed species characterization methods offers new opportunities for gaining deeper insights into gas-surface reactions. In microkinetic modeling, a hybrid rate parameter evaluation approach that combines first-principles calculations with semiempirical methods, followed by automated mechanism generation and data-driven optimization, opens new avenues for efficiently constructing surface mechanisms. Furthermore, extending microkinetic modeling beyond mean-field approximations allows simulations under realistic catalyst operating conditions. Finally, the critical role of gas-phase mechanisms and comprehensive microkinetic modeling analyses in advancing our fundamental understanding of gas-solid catalytic processes is highlighted.
Collapse
Affiliation(s)
- Wenhao Yuan
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zaili Xiong
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Meirong Zeng
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhongyue Zhou
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhandong Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Jiuzhong Yang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Long Zhao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Fei Qi
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
2
|
Thum L, Arztmann M, Zizak I, Grüneberger R, Steigert A, Grimm N, Wallacher D, Schlatmann R, Amkreutz D, Gili A. In situ cell for grazing-incidence x-ray diffraction on thin films in thermal catalysis. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:033904. [PMID: 38446003 DOI: 10.1063/5.0179989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/17/2024] [Indexed: 03/07/2024]
Abstract
A cell for synchrotron-based grazing-incidence x-ray diffraction at ambient pressures and moderate temperatures in a controlled gas atmosphere is presented. The cell is suited for the in situ study of thin film samples under catalytically relevant conditions. To some extent, in addition to diffraction, the cell can be simultaneously applied for x-ray reflectometry and fluorescence studies. Different domes enclosing the sample have been studied and selected to ensure minimum contribution to the diffraction patterns. The applicability of the cell is demonstrated using synchrotron radiation by monitoring structural changes of a 3 nm Pd thin film upon interaction with gas-phase hydrogen and during acetylene semihydrogenation at 150 °C. The cell allows investigation of very thin films under catalytically relevant conditions.
Collapse
Affiliation(s)
- Lukas Thum
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Manuela Arztmann
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Ivo Zizak
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - René Grüneberger
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Alexander Steigert
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Nico Grimm
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Dirk Wallacher
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Rutger Schlatmann
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
- HTW Berlin-University of Applied Sciences, 12459 Berlin, Germany
| | - Daniel Amkreutz
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Albert Gili
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| |
Collapse
|
3
|
Pfaff S, Larsson A, Orlov D, Rämisch L, Gericke SM, Lundgren E, Zetterberg J. A Polycrystalline Pd Surface Studied by Two-Dimensional Surface Optical Reflectance during CO Oxidation: Bridging the Materials Gap. ACS APPLIED MATERIALS & INTERFACES 2024; 16:444-453. [PMID: 38109219 PMCID: PMC10788831 DOI: 10.1021/acsami.3c11341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/19/2023] [Accepted: 11/13/2023] [Indexed: 12/20/2023]
Abstract
Industrial catalysts are complex materials systems operating in harsh environments. The active parts of the catalysts are nanoparticles that expose different facets with different surface orientations at which the catalytic reactions occur. However, these facets are close to impossible to study in detail under industrially relevant operating conditions. Instead, simpler model systems, such as single crystals with a well-defined surface orientation, have been successfully used to study gas-surface interactions such as adsorption and desorption, surface oxidation, and oxidation/reduction reactions. To more closely mimic the many facets exhibited by nanoparticles and thereby close the so-called materials gap, there has also been a recent move toward using polycrystalline surfaces and curved crystals. However, these studies are limited either by the pressure or spatial resolution at realistic pressures or by the number of surfaces studied simultaneously. In this work, we demonstrate the use of reflectance microscopy to study a vast number of catalytically active surfaces simultaneously under realistic and identical reaction conditions. As a proof of concept, we have conducted an operando experiment to study CO oxidation over a Pd polycrystal, where the polycrystalline surface acts as a collection of many single-crystal surfaces. Finally, we visualized the resulting data by plotting the reflectivity as a function of surface orientation. We think the techniques and visualization methods introduced in this work will be key toward bridging the materials gap in catalysis.
Collapse
Affiliation(s)
- Sebastian Pfaff
- Combustion
Research Facility, Sandia National Laboratories, 7011 East Ave, Livermore, California 94550, United States
| | - Alfred Larsson
- Division
of Synchrotron Radiation Research, Lund
University, Sölvegatan 14, S-22363 Lund, Sweden
| | - Dmytro Orlov
- Division
of Mechanics, Materials and Component Design, Lund University, Ole
Römers väg 1, S-22363 Lund, Sweden
| | - Lisa Rämisch
- Combustion
Physics, Lund University, Sölvegatan 14, S-22363 Lund, Sweden
| | - Sabrina M. Gericke
- Combustion
Physics, Lund University, Sölvegatan 14, S-22363 Lund, Sweden
| | - Edvin Lundgren
- Division
of Synchrotron Radiation Research, Lund
University, Sölvegatan 14, S-22363 Lund, Sweden
| | - Johan Zetterberg
- Combustion
Physics, Lund University, Sölvegatan 14, S-22363 Lund, Sweden
| |
Collapse
|
4
|
Brummel O, Jacobse L, Simanenko A, Deng X, Geile S, Gutowski O, Vonk V, Lykhach Y, Stierle A, Libuda J. Chemical and Structural In-Situ Characterization of Model Electrocatalysts by Combined Infrared Spectroscopy and Surface X-ray Diffraction. J Phys Chem Lett 2023; 14:8820-8827. [PMID: 37750826 DOI: 10.1021/acs.jpclett.3c01777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
New diagnostic approaches are needed to drive progress in the field of electrocatalysis and address the challenges of developing electrocatalytic materials with superior activity, selectivity, and stability. To this end, we developed a versatile experimental setup that combines two complementary in-situ techniques for the simultaneous chemical and structural analysis of planar electrodes under electrochemical conditions: high-energy surface X-ray diffraction (HE-SXRD) and infrared reflection absorption spectroscopy (IRRAS). We tested the potential of the experimental setup by performing a model study in which we investigated the oxidation of preadsorbed CO on a Pt(111) surface as well as the oxidation of the Pt(111) electrode itself. In a single experiment, we were able to identify the adsorbates, their potential dependent adsorption geometries, the effect of the adsorbates on the surface morphology, and the structural evolution of Pt(111) during surface electro-oxidation. In a broader perspective, the combined setup has a high application potential in the field of energy conversion and storage.
Collapse
Affiliation(s)
- Olaf Brummel
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Leon Jacobse
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Alexander Simanenko
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Xin Deng
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Simon Geile
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Olof Gutowski
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Vedran Vonk
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Yaroslava Lykhach
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Andreas Stierle
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Fachbereich Physik, Universität Hamburg, Jungiusstraße 11, 20355 Hamburg, Germany
| | - Jörg Libuda
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| |
Collapse
|
5
|
Gleißner R, Beck EE, Chung S, Semione GDL, Mukharamova N, Gizer G, Pistidda C, Renner D, Noei H, Vonk V, Stierle A. Operando reaction cell for high energy surface sensitive x-ray diffraction and reflectometry. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:073902. [PMID: 35922329 DOI: 10.1063/5.0098893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
A proof of concept is shown for the design of a high pressure heterogeneous catalysis reaction cell suitable for surface sensitive x-ray diffraction and x-ray reflectometry over planar samples using high energy synchrotron radiation in combination with mass spectrometry. This design enables measurements in a pressure range from several tens to hundreds of bars for surface investigations under realistic industrial conditions in heterogeneous catalysis or gaseous corrosion studies.
Collapse
Affiliation(s)
- R Gleißner
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - E E Beck
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Simon Chung
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - G D L Semione
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - N Mukharamova
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - G Gizer
- Institute of Hydrogen Technology, Materials Technology, Helmholtz-Zentrum hereon GmbH, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - C Pistidda
- Institute of Hydrogen Technology, Materials Technology, Helmholtz-Zentrum hereon GmbH, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - D Renner
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - H Noei
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - V Vonk
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - A Stierle
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| |
Collapse
|
6
|
Pfaff S, Rämisch L, Gericke SM, Larsson A, Lundgren E, Zetterberg J. Visualizing the Gas Diffusion Induced Ignition of a Catalytic Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sebastian Pfaff
- Lund University, Combustion Physics, Sölvegatan 14, S-22363 Lund, Sweden
| | - Lisa Rämisch
- Lund University, Combustion Physics, Sölvegatan 14, S-22363 Lund, Sweden
| | - Sabrina M. Gericke
- Lund University, Combustion Physics, Sölvegatan 14, S-22363 Lund, Sweden
| | - Alfred Larsson
- Lund University, Division of Synchrotron Radiation Research, Sölvegatan 14, S-22363 Lund, Sweden
| | - Edvin Lundgren
- Lund University, Division of Synchrotron Radiation Research, Sölvegatan 14, S-22363 Lund, Sweden
| | - Johan Zetterberg
- Lund University, Combustion Physics, Sölvegatan 14, S-22363 Lund, Sweden
| |
Collapse
|
7
|
Blomberg S, Hejral U, Shipilin M, Albertin S, Karlsson H, Hulteberg C, Lömker P, Goodwin C, Degerman D, Gustafson J, Schlueter C, Nilsson A, Lundgren E, Amann P. Bridging the Pressure Gap in CO Oxidation. ACS Catal 2021; 11:9128-9135. [PMID: 34476111 PMCID: PMC8397290 DOI: 10.1021/acscatal.1c00806] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/11/2021] [Indexed: 11/28/2022]
Abstract
Performing fundamental operando catalysis studies under realistic conditions is a key to further develop and increase the efficiency of industrial catalysts. Operando X-ray photoelectron spectroscopy (XPS) experiments have been limited to pressures, and the relevance for industrial applications has been questioned. Herein, we report on the CO oxidation experiment on Pd(100) performed at a total pressure of 1 bar using XPS. We investigate the light-off regime and the surface chemical composition at the atomistic level in the highly active phase. Furthermore, the observed gas-phase photoemission peaks of CO2, CO, and O2 indicate that the kinetics of the reaction during the light-off regime can be followed operando, and by studying the reaction rate of the reaction, the activation energy is calculated. The reaction was preceded by an in situ oxidation study in 7% O2 in He and a total pressure of 70 mbar to confirm the surface sensitivity and assignment of the oxygen-induced photoemission peaks. However, oxygen-induced photoemission peaks were not observed during the reaction studies, but instead, a metallic Pd phase is present in the highly active regime under the conditions applied. The novel XPS setup utilizes hard X-rays to enable high-pressure studies, combined with a grazing incident angle to increase the surface sensitivity of the measurement. Our findings demonstrate the possibilities of achieving chemical information of the catalyst, operando, on an atomistic level, under industrially relevant conditions.
Collapse
Affiliation(s)
- Sara Blomberg
- Department of Chemical Engineering, Lund University, Lund 221 00, Sweden
| | - Uta Hejral
- Department of Physics, Lund University, Lund 221 00, Sweden
| | - Mikhail Shipilin
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm 10691, Sweden
| | | | - Hanna Karlsson
- Department of Chemical Engineering, Lund University, Lund 221 00, Sweden
| | | | - Patrick Lömker
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg 22607, Germany
| | - Christopher Goodwin
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm 10691, Sweden
| | - David Degerman
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm 10691, Sweden
| | | | - Christoph Schlueter
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg 22607, Germany
| | - Anders Nilsson
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm 10691, Sweden
| | - Edvin Lundgren
- Department of Physics, Lund University, Lund 221 00, Sweden
| | - Peter Amann
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm 10691, Sweden
| |
Collapse
|
8
|
Pfaff S, Larsson A, Orlov D, Harlow GS, Abbondanza G, Linpé W, Rämisch L, Gericke SM, Zetterberg J, Lundgren E. Operando Reflectance Microscopy on Polycrystalline Surfaces in Thermal Catalysis, Electrocatalysis, and Corrosion. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19530-19540. [PMID: 33870682 PMCID: PMC8288973 DOI: 10.1021/acsami.1c04961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
We have developed a microscope with a spatial resolution of 5 μm, which can be used to image the two-dimensional surface optical reflectance (2D-SOR) of polycrystalline samples in operando conditions. Within the field of surface science, operando tools that give information about the surface structure or chemistry of a sample under realistic experimental conditions have proven to be very valuable to understand the intrinsic reaction mechanisms in thermal catalysis, electrocatalysis, and corrosion science. To study heterogeneous surfaces in situ, the experimental technique must both have spatial resolution and be able to probe through gas or electrolyte. Traditional electron-based surface science techniques are difficult to use under high gas pressure conditions or in an electrolyte due to the short mean free path of electrons. Since it uses visible light, SOR can easily be used under high gas pressure conditions and in the presence of an electrolyte. In this work, we use SOR in combination with a light microscope to gain information about the surface under realistic experimental conditions. We demonstrate this by studying the different grains of three polycrystalline samples: Pd during CO oxidation, Au in electrocatalysis, and duplex stainless steel in corrosion. Optical light-based techniques such as SOR could prove to be a good alternative or addition to more complicated techniques in improving our understanding of complex polycrystalline surfaces with operando measurements.
Collapse
Affiliation(s)
- Sebastian Pfaff
- Combustion
Physics, Lund University, Sölvegatan 14, S-22363 Lund, Sweden
| | - Alfred Larsson
- Division
of Synchrotron Radiation Research, Lund
University, Sölvegatan
14, S-22363 Lund, Sweden
| | - Dmytro Orlov
- Materials
Engineering, Lund University, Ole Römers väg 1, S-22363 Lund, Sweden
| | - Gary S. Harlow
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Giuseppe Abbondanza
- Division
of Synchrotron Radiation Research, Lund
University, Sölvegatan
14, S-22363 Lund, Sweden
| | - Weronica Linpé
- Division
of Synchrotron Radiation Research, Lund
University, Sölvegatan
14, S-22363 Lund, Sweden
| | - Lisa Rämisch
- Combustion
Physics, Lund University, Sölvegatan 14, S-22363 Lund, Sweden
| | - Sabrina M. Gericke
- Combustion
Physics, Lund University, Sölvegatan 14, S-22363 Lund, Sweden
| | - Johan Zetterberg
- Combustion
Physics, Lund University, Sölvegatan 14, S-22363 Lund, Sweden
| | - Edvin Lundgren
- Division
of Synchrotron Radiation Research, Lund
University, Sölvegatan
14, S-22363 Lund, Sweden
| |
Collapse
|
9
|
Hejral U, Shipilin M, Gustafson J, Stierle A, Lundgren E. High energy surface x-ray diffraction applied to model catalyst surfaces at work. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:073001. [PMID: 33690191 DOI: 10.1088/1361-648x/abb17c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Catalysts are materials that accelerate the rate of a desired chemical reaction. As such, they constitute an integral part in many applications ranging from the production of fine chemicals in chemical industry to exhaust gas treatment in vehicles. Accordingly, it is of utmost economic interest to improve catalyst efficiency and performance, which requires an understanding of the interplay between the catalyst structure, the gas phase and the catalytic activity under realistic reaction conditions at ambient pressures and elevated temperatures. In recent years efforts have been made to increasingly develop techniques that allow for investigating model catalyst samples under conditions closer to those of real technical catalysts. One of these techniques is high energy surface x-ray diffraction (HESXRD), which uses x-rays with photon energies typically in the range of 70-80 keV. HESXRD allows a fast data collection of three dimensional reciprocal space for the structure determination of model catalyst samples under operando conditions and has since been used for the investigation of an increasing number of different model catalysts. In this article we will review general considerations of HESXRD including its working principle for different model catalyst samples and the experimental equipment required. An overview over HESXRD investigations performed in recent years will be given, and the advantages of HESXRD with respect to its application to different model catalyst samples will be presented. Moreover, the combination of HESXRD with other operando techniques such as in situ mass spectrometry, planar laser-induced fluorescence and surface optical reflectance will be discussed. The article will close with an outlook on future perspectives and applications of HESXRD.
Collapse
Affiliation(s)
- Uta Hejral
- Division of Synchrotron Radiation Research, Lund University, 221 00 Lund, Sweden
- Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg, Germany
- Fachbereich Physik, Universität Hamburg, 20355 Hamburg, Germany
| | - Mikhail Shipilin
- Department of Physics, Stockholm University, 106 91 Stockholm, Sweden
| | - Johan Gustafson
- Division of Synchrotron Radiation Research, Lund University, 221 00 Lund, Sweden
| | - Andreas Stierle
- Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg, Germany
- Fachbereich Physik, Universität Hamburg, 20355 Hamburg, Germany
| | - Edvin Lundgren
- Division of Synchrotron Radiation Research, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
10
|
Abstract
Many important chemically reacting systems are inherently multi-dimensional with spatial and temporal variations in the thermochemical state, which can be strongly coupled to interactions with transport processes. Fundamental insights into these systems require multi-dimensional measurements of the thermochemical state as well as fluid dynamics quantities. Laser-based imaging diagnostics provide spatially and temporally resolved measurements that help address this need. The state of the art in imaging diagnostics is continually progressing with the goal of attaining simultaneous multi-parameter measurements that capture transient processes, particularly those that lead to stochastic events, such as localized extinction in turbulent combustion. Development efforts in imaging diagnostics benefit from advances in laser and detector technology. This article provides a perspective on the progression of increasing dimensionality of laser-based imaging diagnostics and highlights the evolution from single-point measurements to 1D and 2D multi-parameter imaging and 3D high-speed imaging. This evolution is demonstrated using highlights of laser-based imaging techniques in combustion science research as an exemplar of a complex multi-dimensional chemically reacting system with chemistry-transport coupling. Imaging diagnostics impact basic research in other chemically reacting systems as well, such as measurements of near-surface gases in heterogeneous catalysis. The expanding dimensionality of imaging diagnostics leads to larger and more complex datasets that require increasingly demanding approaches to data analysis and provide opportunities for increased collaboration between experimental and computational researchers in tackling these challenges.
Collapse
Affiliation(s)
- Jonathan H Frank
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, USA
| |
Collapse
|
11
|
Albinsson D, Boje A, Nilsson S, Tiburski C, Hellman A, Ström H, Langhammer C. Copper catalysis at operando conditions-bridging the gap between single nanoparticle probing and catalyst-bed-averaging. Nat Commun 2020; 11:4832. [PMID: 32973158 PMCID: PMC7518423 DOI: 10.1038/s41467-020-18623-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/26/2020] [Indexed: 12/28/2022] Open
Abstract
In catalysis, nanoparticles enable chemical transformations and their structural and chemical fingerprints control activity. To develop understanding of such fingerprints, methods studying catalysts at realistic conditions have proven instrumental. Normally, these methods either probe the catalyst bed with low spatial resolution, thereby averaging out single particle characteristics, or probe an extremely small fraction only, thereby effectively ignoring most of the catalyst. Here, we bridge the gap between these two extremes by introducing highly multiplexed single particle plasmonic nanoimaging of model catalyst beds comprising 1000 nanoparticles, which are integrated in a nanoreactor platform that enables online mass spectroscopy activity measurements. Using the example of CO oxidation over Cu, we reveal how highly local spatial variations in catalyst state dynamics are responsible for contradicting information about catalyst active phase found in the literature, and identify that both surface and bulk oxidation state of a Cu nanoparticle catalyst dynamically mediate its activity.
Collapse
Affiliation(s)
- David Albinsson
- Department of Physics, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | - Astrid Boje
- Department of Physics, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | - Sara Nilsson
- Department of Physics, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | - Christopher Tiburski
- Department of Physics, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | - Anders Hellman
- Department of Physics, Chalmers University of Technology, 412 96, Göteborg, Sweden
- Competence Centre for Catalysis, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | - Henrik Ström
- Department of Mechanics and Maritime Sciences, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | - Christoph Langhammer
- Department of Physics, Chalmers University of Technology, 412 96, Göteborg, Sweden.
| |
Collapse
|
12
|
Linpé W, Harlow GS, Larsson A, Abbondanza G, Rämisch L, Pfaff S, Zetterberg J, Evertsson J, Lundgren E. An electrochemical cell for 2-dimensional surface optical reflectance during anodization and cyclic voltammetry. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:044101. [PMID: 32357721 DOI: 10.1063/1.5133905] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
We have developed an electrochemical cell for in situ 2-Dimensional Surface Optical Reflectance (2D-SOR) studies during anodization and cyclic voltammetry. The 2D-SOR signal was recorded from electrodes made of polycrystalline Al, Au(111), and Pt(100) single crystals. The changes can be followed at a video rate acquisition frequency of 200 Hz and demonstrate a strong contrast between oxidizing and reducing conditions. Good correlation between the 2D-SOR signal and the anodization conditions or the cyclic voltammetry current is also observed. The power of this approach is discussed, with a focus on applications in various fields of electrochemistry. The combination of 2D-SOR with other techniques, as well as its spatial resolution and sensitivity, has also been discussed.
Collapse
Affiliation(s)
- W Linpé
- Division of Synchrotron Radiation Research, Lund University, SE-22100 Lund, Sweden
| | - G S Harlow
- Division of Synchrotron Radiation Research, Lund University, SE-22100 Lund, Sweden
| | - A Larsson
- Division of Synchrotron Radiation Research, Lund University, SE-22100 Lund, Sweden
| | - G Abbondanza
- Division of Synchrotron Radiation Research, Lund University, SE-22100 Lund, Sweden
| | - L Rämisch
- Division of Combustion Physics, Lund University, SE-22100 Lund, Sweden
| | - S Pfaff
- Division of Combustion Physics, Lund University, SE-22100 Lund, Sweden
| | - J Zetterberg
- Division of Combustion Physics, Lund University, SE-22100 Lund, Sweden
| | - J Evertsson
- Hydro Extruded Solutions AB Innovation & Technology, Finspång, Sweden
| | - E Lundgren
- Division of Synchrotron Radiation Research, Lund University, SE-22100 Lund, Sweden
| |
Collapse
|