1
|
Li J, Vindel-Zandbergen P, Li J, Felker PM, Bačić Z. HF Trimer: A New Full-Dimensional Potential Energy Surface and Rigorous 12D Quantum Calculations of Vibrational States. J Phys Chem A 2024; 128:9707-9720. [PMID: 39484697 DOI: 10.1021/acs.jpca.4c03771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
HF trimer, as the smallest and the lightest cyclic hydrogen-bonded (HB) cluster, has long been a favorite prototype system for spectroscopic and theoretical investigations of the structure, energetics, spectroscopy, and dynamics of hydrogen-bond networks. Recently, rigorous quantum 12D calculations of the coupled intra- and intermolecular vibrations of this fundamental HB trimer (J. Chem. Phys. 2023, 158, 234109) were performed, employing an older ab initio-based many-body potential energy surface (PES). While the theoretical results were found to be in reasonably good agreement with the available spectroscopic data, it was also evident that it is highly desirable to develop a more accurate 12D PES of HF trimer. Motivated by this, here we report a new, and the first fully ab initio 12D PES of this paradigmatic system. Approximately 42,540 geometries were sampled and calculated at the level of CCSD(T)-F12a/AVTZ. The permutationally invariant polynomial-neural network based Δ-machine learning approach (J. Phys. Chem. Lett. 2022, 13, 4729) was employed to perform cost-efficient calculations of the basis-set-superposition error (BSSE) correction. By strategically selecting data points, this approach facilitated the construction of a high-precision PES with BSSE correction, while requiring only a minimal number of BSSE value computations. The fitting error of the final PES is only 0.035 kcal/mol. To assess its performance, the 12D fully coupled quantum calculations of excited intra- and intermolecular vibrational states of HF trimer are carried out using the rigorous methodology developed by us earlier. The results are found to be in a significantly better agreement with the available spectroscopic data than those obtained with the previously existing semiempirical 12D PES.
Collapse
Affiliation(s)
- Jia Li
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, China
| | - Patricia Vindel-Zandbergen
- Department of Chemistry, New York University, New York, New York 10003, United States
- Simons Center for Computational Physical Chemistry, New York University, New York, New York 10003, United States
| | - Jun Li
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, China
| | - Peter M Felker
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Zlatko Bačić
- Department of Chemistry, New York University, New York, New York 10003, United States
- Simons Center for Computational Physical Chemistry, New York University, New York, New York 10003, United States
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
| |
Collapse
|
2
|
Simkó I, Felker PM, Bačić Z. HCl trimer: HCl-stretch excited intramolecular and intermolecular vibrational states from 12D fully coupled quantum calculations employing contracted intra- and inter-molecular bases. J Chem Phys 2024; 160:164304. [PMID: 38647302 DOI: 10.1063/5.0207366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/07/2024] [Indexed: 04/25/2024] Open
Abstract
We present fully coupled, full-dimensional quantum calculations of the inter- and intra-molecular vibrational states of HCl trimer, a paradigmatic hydrogen-bonded molecular trimer. They are performed utilizing the recently developed methodology for the rigorous 12D quantum treatment of the vibrations of the noncovalently bound trimers of flexible diatomic molecules [Felker and Bačić, J. Chem. Phys. 158, 234109 (2023)], which was previously applied to the HF trimer by us. In this work, the many-body 12D potential energy surface (PES) of (HCl)3 [Mancini and Bowman, J. Phys. Chem. A 118, 7367 (2014)] is employed. The calculations extend to the intramolecular HCl-stretch excited vibrational states of the trimer with one- and two-quanta, together with the low-energy intermolecular vibrational states in the two excited v = 1 intramolecular vibrational manifolds. They reveal significant coupling between the intra- and inter-molecular vibrational modes. The 12D calculations also show that the frequencies of the v = 1 HCl stretching states of the HCl trimer are significantly redshifted relative to those of the isolated HCl monomer. Detailed comparison is made between the results of the 12D calculations on the two-body PES, obtained by removing the three-body term from the original 2 + 3-body PES, and those computed on the 2 + 3-body PES. It demonstrates that the three-body interactions have a strong effect on the trimer binding energy as well as on its intra- and inter-molecular vibrational energy levels. Comparison with the available spectroscopic data shows that good agreement with the experiment is achieved only if the three-body interactions are included. Some low-energy vibrational states localized in a secondary minimum of the PES are characterized as well.
Collapse
Affiliation(s)
- Irén Simkó
- Department of Chemistry, New York University, New York, New York 10003, USA
- Simons Center for Computational Physical Chemistry at New York University, New York, New York 10003, USA
| | - Peter M Felker
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| | - Zlatko Bačić
- Department of Chemistry, New York University, New York, New York 10003, USA
- Simons Center for Computational Physical Chemistry at New York University, New York, New York 10003, USA
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
| |
Collapse
|
3
|
Fedorov DG. Analysis of Site Energies and Excitonic Couplings: The Role of Symmetry and Polarization. J Phys Chem A 2024; 128:1154-1162. [PMID: 38302431 DOI: 10.1021/acs.jpca.3c06293] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
An excitonic coupling model is developed based on an equation-of-motion coupled cluster combined with the fragment molecular orbital method. The effects of polarization and excitonic coupling on the splitting of quasi-degenerate levels in systems containing multiple chromophores are elucidated on dimers of formaldehyde, water, formic acid, hydrogen fluoride, and carbon monoxide. It is shown that the level structure is mainly determined by the mutual polarization of chromophores and to a lesser extent by the excitonic coupling. The role of symmetry in excitonic coupling in dimers is discussed. The excitonic coupling between all residues in the photoactive yellow protein (PDB: 2PHY) is analyzed.
Collapse
Affiliation(s)
- Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| |
Collapse
|
4
|
Yang D, Guo H, Xie D. Recent advances in quantum theory on ro-vibrationally inelastic scattering. Phys Chem Chem Phys 2023; 25:3577-3594. [PMID: 36602236 DOI: 10.1039/d2cp05069b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular collisions are of fundamental importance in understanding intermolecular interaction and dynamics. Its importance is accentuated in cold and ultra-cold collisions because of the dominant quantum mechanical nature of the scattering. We review recent advances in the time-independent approach to quantum mechanical characterization of non-reactive scattering in tetratomic systems, which is ideally suited for large collisional de Broglie wavelengths characteristic in cold and ultracold conditions. We discuss quantum scattering algorithms between two diatoms and between a triatom and an atom and their implementation, as well as various approximate schemes. They not only enable the characterization of collision dynamics in realistic systems but also serve as benchmarks for developing more approximate methods.
Collapse
Affiliation(s)
- Dongzheng Yang
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA.
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA.
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China. .,Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
5
|
A full-dimensional ab initio potential energy surface and rovibrational spectra for the Ar–SO2 complex. Theor Chem Acc 2022. [DOI: 10.1007/s00214-022-02914-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Ovsyannikov RI, Makhnev VY, Zobov NF, Koput J, Tennyson J, Polyansky OL. Highly accurate HF dimer ab initio potential energy surface. J Chem Phys 2022; 156:164305. [PMID: 35490002 DOI: 10.1063/5.0083563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A highly accurate, (HF)2 potential energy surface (PES) is constructed based on ab initio calculations performed at the coupled-cluster single double triple level of theory with an aug-cc-pVQZ-F12 basis set at about 152 000 points. A higher correlation correction is computed at coupled-cluster single double triple quadruple level for 2000 points and is considered alongside other more minor corrections due to relativity, core-valence correlation, and Born-Oppenheimer failure. The analytical surface constructed uses 500 constants to reproduce the ab initio points with a standard deviation of 0.3 cm-1. Vibration-rotation-inversion energy levels of the HF dimer are computed for this PES by variational solution of the nuclear-motion Schrödinger equation using the program WAVR4. Calculations over an extended range of rotationally excited states show very good agreement with the experimental data. In particular, the known empirical rotational constants B for the ground vibrational states are predicted to better than about 2 MHz. B constants for excited vibrational states are reproduced several times more accurately than by previous calculations. This level of accuracy is shown to extend to higher excited inter-molecular vibrational states v and higher excited rotational quantum numbers (J, Ka).
Collapse
Affiliation(s)
- Roman I Ovsyannikov
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Street, Nizhny Novgorod 603950, Russia
| | - Vladimir Yu Makhnev
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Street, Nizhny Novgorod 603950, Russia
| | - Nikolai F Zobov
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Street, Nizhny Novgorod 603950, Russia
| | - Jacek Koput
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | - Jonathan Tennyson
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Oleg L Polyansky
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Street, Nizhny Novgorod 603950, Russia
| |
Collapse
|
7
|
Felker PM, Bačić Z. Noncovalently bound molecular complexes beyond diatom–diatom systems: full-dimensional, fully coupled quantum calculations of rovibrational states. Phys Chem Chem Phys 2022; 24:24655-24676. [DOI: 10.1039/d2cp04005k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The methodological advances made in recent years have significantly extended the range and dimensionality of noncovalently bound molecular complexes for which full-dimensional quantum calculations of their rovibrational states are feasible.
Collapse
Affiliation(s)
- Peter M. Felker
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
| | - Zlatko Bačić
- Department of Chemistry, New York University, New York, NY, 10003, USA
- Simons Center for Computational Physical Chemistry at New York University, USA
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai, 200062, China
| |
Collapse
|
8
|
Jankowski P, Grabowska E, Szalewicz K. On the role of coupled-clusters' full triple and perturbative quadruple excitations on rovibrational spectra of van der Waals complexes. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1955989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Piotr Jankowski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Ewelina Grabowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Krzysztof Szalewicz
- Department of Physics and Astronomy, University of Delaware, Newark, DE, USA
| |
Collapse
|
9
|
Felker PM, Bačić Z. H2O–CO and D2O–CO complexes: Intra- and intermolecular rovibrational states from full-dimensional and fully coupled quantum calculations. J Chem Phys 2020; 153:074107. [DOI: 10.1063/5.0020566] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Peter M. Felker
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| | - Zlatko Bačić
- Department of Chemistry, New York University, New York, New York 10003, USA
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
| |
Collapse
|
10
|
|
11
|
Liu Q, Huang J, Zhou Y, Xie D. A full-dimensional ab initio intermolecular potential energy surface and ro-vibrational spectra for N 2–HF and N 2–DF. J Chem Phys 2020; 152:084304. [DOI: 10.1063/1.5141070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Qiong Liu
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing Huang
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yanzi Zhou
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
12
|
Yang D, Huang J, Hu X, Guo H, Xie D. Breakdown of energy transfer gap laws revealed by full-dimensional quantum scattering between HF molecules. Nat Commun 2019; 10:4658. [PMID: 31604950 PMCID: PMC6789015 DOI: 10.1038/s41467-019-12691-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/16/2019] [Indexed: 11/09/2022] Open
Abstract
Inelastic collisions involving molecular species are key to energy transfer in gaseous environments. They are commonly governed by an energy gap law, which dictates that transitions are dominated by those between initial and final states with roughly the same ro-vibrational energy. Transitions involving rotational inelasticity are often further constrained by the rotational angular momentum. Here, we demonstrate using full-dimensional quantum scattering on an ab initio based global potential energy surface (PES) that HF-HF inelastic collisions do not obey the energy and angular momentum gap laws. Detailed analyses attribute the failure of gap laws to the exceedingly strong intermolecular interaction. On the other hand, vibrational state-resolved rate coefficients are in good agreement with existing experimental results, validating the accuracy of the PES. These new and surprising results are expected to extend our understanding of energy transfer and provide a quantitative basis for numerical simulations of hydrogen fluoride chemical lasers.
Collapse
Affiliation(s)
- Dongzheng Yang
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jing Huang
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xixi Hu
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
13
|
Oswald S, Suhm MA. Soft experimental constraints for soft interactions: a spectroscopic benchmark data set for weak and strong hydrogen bonds. Phys Chem Chem Phys 2019; 21:18799-18810. [PMID: 31453998 DOI: 10.1039/c9cp03651b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An experimental benchmark data base on rotational constants, vibrational properties and energy differences for weakly and more strongly hydrogen-bonded complexes and their constituents from the spectroscopic literature is assembled. It is characterized in detail and finally contracted to a more compact, discriminatory set (ENCH-51, for Experimental Non-Covalent Harmonic with 51 entries). The meeting points between theory and experiment consist of equilibrium rotational constants and harmonic frequencies and energies, which are back-corrected from experimental observables and are very easily accessible by quantum chemical calculations. The relative performance of B3LYP-D3, PBE0-D3 and M06-2X density functional theory predictions with a quadruple-zeta basis set is used to illustrate systematic errors, error compensation and selective performance for structural, vibrational and energetical observables. The current focus is on perspectives and different benchmarking methodologies, rather than on a specific theoretical method or a specific class of compounds. Extension of the data base in chemical, observable and quantum chemical method space is encouraged.
Collapse
Affiliation(s)
- Sönke Oswald
- Institut für Physikalische Chemie, Universität Göttingen, Tammannstr. 6, 37077 Göttingen, Germany.
| | - Martin A Suhm
- Institut für Physikalische Chemie, Universität Göttingen, Tammannstr. 6, 37077 Göttingen, Germany.
| |
Collapse
|
14
|
Yao Q, Morita M, Xie C, Balakrishnan N, Guo H. Globally Accurate Full-Dimensional Potential Energy Surface for H 2 + HCl Inelastic Scattering. J Phys Chem A 2019; 123:6578-6586. [PMID: 31268323 DOI: 10.1021/acs.jpca.9b05958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A globally accurate full-dimensional potential energy surface (PES) for the inelastic scattering between H2 and HCl is developed on the basis of a large number of points calculated at the coupled-cluster singles, doubles, and perturbative triples level of theory. The machine-learned PES is trained with 42 417 ab initio points using the permutation invariant polynomial-neural network method, resulting in a root-mean-square fitting error of 5.6 cm-1. Both full- and reduced-dimensional quantum calculations for rotationally inelastic scattering are performed on this new PES and good agreement is obtained with previous quantum dynamical results on a reduced-dimensional model. Furthermore, strong resonances are identified at collision energies below 100 K, including cold conditions. This new PES provides a reliable platform for future studies of scattering dynamics with vibrationally excited collision partners in a wide range of collision energies extending to cold and ultracold conditions.
Collapse
Affiliation(s)
- Qian Yao
- Department of Chemistry and Chemical Biology , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Masato Morita
- Department of Chemistry and Biochemistry , University of Nevada , Las Vegas , Nevada 89154 , United States
| | - Changjian Xie
- Department of Chemistry and Chemical Biology , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Naduvalath Balakrishnan
- Department of Chemistry and Biochemistry , University of Nevada , Las Vegas , Nevada 89154 , United States
| | - Hua Guo
- Department of Chemistry and Chemical Biology , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| |
Collapse
|
15
|
Felker PM, Bačić Z. Weakly bound molecular dimers: Intramolecular vibrational fundamentals, overtones, and tunneling splittings from full-dimensional quantum calculations using compact contracted bases of intramolecular and low-energy rigid-monomer intermolecular eigenstates. J Chem Phys 2019; 151:024305. [DOI: 10.1063/1.5111131] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Peter M. Felker
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| | - Zlatko Bačić
- Department of Chemistry, New York University, New York, New York 10003, USA
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai, 200062, China
| |
Collapse
|