1
|
Grzybowski A, Koperwas K, Paluch M. Role of anisotropy in understanding the molecular grounds for density scaling in dynamics of glass-forming liquids. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:084501. [PMID: 38861964 DOI: 10.1088/1361-6633/ad569d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Molecular Dynamics (MD) simulations of glass-forming liquids play a pivotal role in uncovering the molecular nature of the liquid vitrification process. In particular, much focus was given to elucidating the interplay between the character of intermolecular potential and molecular dynamics behaviour. This has been tried to achieve by simulating the spherical particles interacting via isotropic potential. However, when simulation and experimental data are analysed in the same way by using the density scaling approaches, serious inconsistency is revealed between them. Similar scaling exponent values are determined by analysing the relaxation times and pVT data obtained from computer simulations. In contrast, these values differ significantly when the same analysis is carried out in the case of experimental data. As discussed thoroughly herein, the coherence between results of simulation and experiment can be achieved if anisotropy of intermolecular interactions is introduced to MD simulations. In practice, it has been realized in two different ways: (1) by using the anisotropic potential of the Gay-Berne type or (2) by replacing the spherical particles with quasi-real polyatomic anisotropic molecules interacting through isotropic Lenard-Jones potential. In particular, the last strategy has the potential to be used to explore the relationship between molecular architecture and molecular dynamics behaviour. Finally, we hope that the results presented in this review will also encourage others to explore how 'anisotropy' affects remaining aspects related to liquid-glass transition, like heterogeneity, glass transition temperature, glass forming ability, etc.
Collapse
Affiliation(s)
- A Grzybowski
- Institute of Physics, University of Silesia in Katowice, 41-500 Chorzów, Poland
| | - K Koperwas
- Institute of Physics, University of Silesia in Katowice, 41-500 Chorzów, Poland
| | - M Paluch
- Institute of Physics, University of Silesia in Katowice, 41-500 Chorzów, Poland
| |
Collapse
|
2
|
Saric D, Bell IH, Guevara-Carrion G, Vrabec J. Influence of repulsion on entropy scaling and density scaling of monatomic fluids. J Chem Phys 2024; 160:104503. [PMID: 38456532 DOI: 10.1063/5.0196592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/18/2024] [Indexed: 03/09/2024] Open
Abstract
Entropy scaling is applied to the shear viscosity, self-diffusion coefficient, and thermal conductivity of simple monatomic fluids. An extensive molecular dynamics simulation series is performed to obtain these transport properties and the residual entropy of three potential model classes with variable repulsive exponents: n, 6 Mie (n = 9, 12, 15, and 18), Buckingham's exponential-six (α = 12, 14, 18, and 30), and Tang-Toennies (αT = 4.051, 4.275, and 4.600). A wide range of liquid and supercritical gas- and liquid-like states is covered with a total of 1120 state points. Comparisons to equations of state, literature data, and transport property correlations are made. Although the absolute transport property values within a given potential model class may strongly depend on the repulsive exponent, it is found that the repulsive steepness plays a negligible role when entropy scaling is applied. Hence, the plus-scaled transport properties of n, 6 Mie, exponential-six, and Tang-Toennies fluids lie basically on one master curve, which closely corresponds with entropy scaling correlations for the Lennard-Jones fluid. This trend is confirmed by literature data of n, 6 Mie, and exponential-six fluids. Furthermore, entropy scaling holds for state points where the Pearson correlation coefficient R is well below 0.9. The condition R > 0.9 for strongly correlating liquids is thus not necessary for the successful application of entropy scaling, pointing out that isomorph theory may be a part of a more general framework that is behind the success of entropy scaling. Density scaling reveals a strong influence of the repulsive exponent on this particular approach.
Collapse
Affiliation(s)
- Denis Saric
- Thermodynamics, Technical University of Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
| | - Ian H Bell
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | | | - Jadran Vrabec
- Thermodynamics, Technical University of Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
| |
Collapse
|
3
|
Sheydaafar Z, Dyre JC, Schrøder TB. Scaling Properties of Liquid Dynamics Predicted from a Single Configuration: Small Rigid Molecules. J Phys Chem B 2023; 127:3478-3487. [PMID: 37040433 DOI: 10.1021/acs.jpcb.3c01574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Isomorphs are curves in the thermodynamic phase diagram along which structure and dynamics are invariant to a good approximation. There are two main ways to trace out isomorphs, the configurational-adiabat method and the direct-isomorph-check method. Recently a new method based on the scaling properties of forces was introduced and shown to work very well for atomic systems [T. B. Schrøder, Phys. Rev. Lett. 2022, 129, 245501]. A unique feature of this method is that it only requires a single equilibrium configuration for tracing out an isomorph. We here test generalizations of this method to molecular systems and compare to simulations of three simple molecular models: the asymmetric dumbbell model of two Lennard-Jones spheres, the symmetric inverse-power-law dumbbell model, and the Lewis-Wahnström o-terphenyl model. We introduce and test two force-based and one torque-based methods, all of which require just a single configuration for tracing out an isomorph. Overall, the method based on requiring invariant center-of-mass reduced forces works best.
Collapse
Affiliation(s)
- Zahraa Sheydaafar
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Jeppe C Dyre
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Thomas B Schrøder
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
4
|
Bell I, Fingerhut R, Vrabec J, Costigliola L. Connecting Entropy Scaling and Density Scaling. J Chem Phys 2022; 157:074501. [DOI: 10.1063/5.0097088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
It is shown that the residual entropy (entropy minus that of the ideal gas at the same temperature and density) is mostly synonymous with the independent variable of density scaling, identifying a direct link between these two approaches. The residual entropy and the effective hardness of interaction (itself a derivative at constant residual entropy) are studied for the Lennard-Jones monomer and dimer as well as a range of rigid molecular models for carbon dioxide. It is observed that the density scaling exponent appears to be related to the two-body interactions in the dilute-gas limit.
Collapse
Affiliation(s)
- Ian Bell
- National Institute of Standards and Technology Applied Chemicals and Materials Division, United States of America
| | | | - Jadran Vrabec
- Process Engineering, Technical University of Berlin, Germany
| | | |
Collapse
|
5
|
Harris KR, Kanakubo M. Effect of pressure on the transport properties of 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide and 1-hexyl-3-methylimidazolium tetrafluoroborate. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Harris KR, Kanakubo M. Does [Tf 2N] - slither? Equivalence of cation and anion self-diffusion activation volumes in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide. Phys Chem Chem Phys 2022; 24:14430-14439. [PMID: 35649435 DOI: 10.1039/d2cp01130a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New high-pressure self-diffusion data are reported for the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([EMIM][Tf2N]) at pressures up to 363 MPa in the temperature range 288-348 K. The cation and anion activation volumes derived from these are found to be equal at a fixed temperature, within experimental error, in contradiction to a report in the literature that they differ significantly. Self-diffusion activation volumes derived from our earlier high-pressure diffusion studies also show equality for the respective cations and anions of bis(trifluoromethylsulfonyl)amide, tetrafluoroborate and hexafluorophosphate salts with various cations. Stokes-Einstein-Sutherland analysis and density scaling are applied to the [EMIM][Tf2N] self-diffusion measurements and support the conclusion that pressure effects both cation and anion mass (and hence charge) transport in the same way. The density scaling parameters are consistent with the theoretical predictions of Knudsen et al. and agree with that for the viscosity, as for other ionic liquids.
Collapse
Affiliation(s)
- Kenneth R Harris
- School of Science, The University of New South Wales, PO Box 7916, Canberra BC, ACT 2610, Australia.
| | - Mitsuhiro Kanakubo
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), 4-2-1 Nigatake, Miyagino-ku, Sendai, Miyagi 983-8551, Japan.
| |
Collapse
|
7
|
Attia E, Dyre JC, Pedersen UR. Extreme case of density scaling: The Weeks-Chandler-Andersen system at low temperatures. Phys Rev E 2021; 103:062140. [PMID: 34271644 DOI: 10.1103/physreve.103.062140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/28/2021] [Indexed: 11/07/2022]
Abstract
This paper studies numerically the Weeks-Chandler-Andersen system, which is shown to obey hidden scale invariance with a density-scaling exponent that varies from below 5 to above 500. This unprecedented variation makes it advantageous to use the fourth-order Runge-Kutta algorithm for tracing out isomorphs. Good isomorph invariance of structure and dynamics is observed over more than three orders of magnitude temperature variation. For all state points studied, the virial potential-energy correlation coefficient and the density-scaling exponent are controlled mainly by the temperature. Based on the assumption of statistically independent pair interactions, a mean-field theory is developed that rationalizes this finding and provides an excellent fit to data at low temperatures.
Collapse
Affiliation(s)
- Eman Attia
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, 4000 Roskilde, Denmark
| | - Jeppe C Dyre
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, 4000 Roskilde, Denmark
| | - Ulf R Pedersen
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, 4000 Roskilde, Denmark
| |
Collapse
|
8
|
Khrapak SA, Khrapak AG. Transport properties of Lennard-Jones fluids: Freezing density scaling along isotherms. Phys Rev E 2021; 103:042122. [PMID: 34005910 DOI: 10.1103/physreve.103.042122] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/30/2021] [Indexed: 11/07/2022]
Abstract
It is demonstrated that properly reduced transport coefficients (self-diffusion, shear viscosity, and thermal conductivity) of Lennard-Jones fluids along isotherms exhibit quasi-universal scaling on the density divided by its value at the freezing point. Moreover, this scaling is closely related to the density scaling of transport coefficients of hard-sphere fluids. The Stokes-Einstein relation without the hydrodynamic diameter is valid in the dense fluid regime. The lower density boundary of its validity can serve as a practical demarcation line between gaslike and liquidlike regimes.
Collapse
Affiliation(s)
- S A Khrapak
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
| | - A G Khrapak
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
| |
Collapse
|
9
|
Singh AN, Dyre JC, Pedersen UR. Solid–liquid coexistence of neon, argon, krypton, and xenon studied by simulations. J Chem Phys 2021; 154:134501. [DOI: 10.1063/5.0045398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Aditya N. Singh
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53703, USA
| | - Jeppe C. Dyre
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P. O. Box 260, DK-4000 Roskilde, Denmark
| | - Ulf R. Pedersen
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P. O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
10
|
Ingebrigtsen TS, Schrøder TB, Dyre JC. Hidden Scale Invariance in Polydisperse Mixtures of Exponential Repulsive Particles. J Phys Chem B 2021; 125:317-327. [PMID: 33369412 DOI: 10.1021/acs.jpcb.0c09726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polydisperse systems of particles interacting by the purely repulsive exponential (EXP) pair potential are studied in regard to how structure and dynamics vary along isotherms, isochores, and isomorphs. The sizable size polydispersities of 23%, 29%, 35%, and 40%, as well as energy polydispersity 35%, were considered. For each system an isomorph was traced out covering about one decade in density. For all systems studied, the structure and dynamics vary significantly along the isotherms and isochores but are invariant to a good approximation along the isomorphs. We conclude that the single-component EXP system's hidden scale invariance (implying isomorph invariance of structure and dynamics) is maintained even when a sizable polydispersity is introduced into the system.
Collapse
Affiliation(s)
- Trond S Ingebrigtsen
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Thomas B Schrøder
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Jeppe C Dyre
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
11
|
Abstract
This paper generalizes isomorph theory to systems that are not in thermal equilibrium. The systems are assumed to be R-simple, i.e., to have a potential energy that as a function of all particle coordinates R obeys the hidden-scale-invariance condition U(Ra) < U(Rb) ⇒ U(λRa) < U(λRb). "Systemic isomorphs" are introduced as lines of constant excess entropy in the phase diagram defined by density and systemic temperature, which is the temperature of the equilibrium state point with the average potential energy equal to U(R). The dynamics is invariant along a systemic isomorph if there is a constant ratio between the systemic and the bath temperature. In thermal equilibrium, the systemic temperature is equal to the bath temperature and the original isomorph formalism is recovered. The new approach rationalizes within a consistent framework previously published observations of isomorph invariance in simulations involving nonlinear steady-state shear flows, zero-temperature plastic flows, and glass-state isomorphs. This paper relates briefly to granular media, physical aging, and active matter. Finally, we discuss the possibility that the energy unit defining the reduced quantities should be based on the systemic rather than the bath temperature.
Collapse
Affiliation(s)
- Jeppe C Dyre
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
12
|
Harris KR. Thermodynamic or density scaling of the thermal conductivity of liquids. J Chem Phys 2020; 153:104504. [PMID: 32933295 DOI: 10.1063/5.0016389] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Thermodynamic or density scaling is applied to thermal conductivity (λ) data from the literature for the model Lennard-Jones (12-6) fluid; the noble gases neon to xenon; nitrogen, ethene, and carbon dioxide as examples of linear molecules; the quasi-spherical molecules methane and carbon tetrachloride; the flexible chain molecules n-hexane and n-octane; the planar toluene and m-xylene; the cyclic methylcyclohexane; the polar R132a and chlorobenzene; and ammonia and methanol as H-bonded fluids. Only data expressed as Rosenfeld reduced properties could be scaled successfully. Two different methods were used to obtain the scaling parameter γ, one based on polynomial fits to the group (TVγ) and the other based on the Avramov equation. The two methods agree well, except for λ of CCl4. γ for the thermal conductivity is similar to those for the viscosity and self-diffusion coefficient for the smaller molecules. It is significantly larger for the Lennard-Jones fluid, possibly due to a different dependence on packing fraction, and much larger for polyatomic molecules where heat transfer through internal modes may have an additional effect. Methanol and ammonia, where energy can be transmitted through intermolecular hydrogen bonding, could not be scaled. This work is intended as a practical attempt to examine thermodynamic scaling of the thermal conductivity of real fluids. The divergence of the scaling parameters for different properties is unexpected, suggesting that refinement of theory is required to rationalize this result. For the Lennard-Jones fluid, the Ohtori-Iishi version of the Stokes-Einstein-Sutherland relation applies at high densities in the liquid and supercritical region.
Collapse
Affiliation(s)
- Kenneth R Harris
- School of Science, The University of New South Wales, P.O. Box 7916, Canberra BC, ACT 2610, Australia
| |
Collapse
|
13
|
Koperwas K, Grzybowski A, Paluch M. Exploring the connection between the density-scaling exponent and the intermolecular potential for liquids on the basis of computer simulations of quasireal model systems. Phys Rev E 2020; 101:012613. [PMID: 32069552 DOI: 10.1103/physreve.101.012613] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Indexed: 11/07/2022]
Abstract
In this paper, based on the molecular dynamics simulations of quasireal model systems, we propose a method for determination of the effective intermolecular potential for real materials. We show that in contrast to the simple liquids, the effective intermolecular potential for the studied systems depends on the thermodynamic conditions. Nevertheless, the previously established relationship for simple liquids between the exponent of the inverse power law approximation of intermolecular potential and the density-scaling exponent is still preserved when small enough intermolecular distances are considered. However, our studies show that molecules approach each other at these very short distances relatively rarely. Consequently, only sparse interactions between extremely close molecules determine the value of the scaling exponent and then strongly influence the connection between dynamics and thermodynamics of the whole system.
Collapse
Affiliation(s)
- K Koperwas
- University of Silesia in Katowice, Institute of Physics, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland and Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - A Grzybowski
- University of Silesia in Katowice, Institute of Physics, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland and Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - M Paluch
- University of Silesia in Katowice, Institute of Physics, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland and Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| |
Collapse
|
14
|
Ransom TC, Casalini R, Fragiadakis D, Roland CM. The complex behavior of the “simplest” liquid: Breakdown of density scaling in tetramethyl tetraphenyl trisiloxane. J Chem Phys 2019; 151:174501. [DOI: 10.1063/1.5121021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- T. C. Ransom
- Naval Research Laboratory, Chemistry Division, Code 6100, Washington, DC 20375-5342, USA
| | - R. Casalini
- Naval Research Laboratory, Chemistry Division, Code 6100, Washington, DC 20375-5342, USA
| | - D. Fragiadakis
- Naval Research Laboratory, Chemistry Division, Code 6100, Washington, DC 20375-5342, USA
| | - C. M. Roland
- Naval Research Laboratory, Chemistry Division, Code 6100, Washington, DC 20375-5342, USA
| |
Collapse
|
15
|
Fragiadakis D, Roland CM. Chain Flexibility and the Segmental Dynamics of Polymers. J Phys Chem B 2019; 123:5930-5934. [PMID: 31188607 DOI: 10.1021/acs.jpcb.9b04068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using molecular dynamics simulations, we examine the dynamics of a family of model polymers with varying chain length and torsional potential barriers. We focus on features of the dynamics of polymers that are seen experimentally but absent in simulations of freely rotating and freely jointed chains. The reduced effect of volume on the segmental dynamics with increasing chain length, a capacity for pressure densification, and the deviation from constant Johari-Goldstein relaxation time at a constant segmental relaxation time all have a common origin, torsional rigidity, and these effects become increasingly apparent for more rigid chains.
Collapse
Affiliation(s)
- Daniel Fragiadakis
- Chemistry Division , Naval Research Laboratory , Washington , District of Columbia 20375-5342 , United States
| | - C Michael Roland
- Chemistry Division , Naval Research Laboratory , Washington , District of Columbia 20375-5342 , United States
| |
Collapse
|