1
|
Chaki S, Román-Manso B, Senatus L, Lewis JA, Schweizer KS. Theoretical study of the impact of dilute nanoparticle additives on the shear elasticity of dense colloidal suspensions. SOFT MATTER 2025; 21:1731-1747. [PMID: 39918291 DOI: 10.1039/d4sm01193g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Motivated by basic issues in soft matter physics and new experimental work on granule-nanoparticle mixtures, we systematically apply naive mode coupling theory with accurate microstructural input to investigate the elastic shear modulus of highly size asymmetric, dense, chemically complex, colloid-nanoparticle mixtures. Our analysis spans four equilibrium microstructural regimes: (i) entropic depletion induced colloid clustering, (ii) discrete adsorbed nanoparticle layers that induce colloid spatial dispersion, (iii) nanoparticle-mediated tight bridging network formation, and (iv) colloidal contact aggregation via direct attractions. Each regime typically displays a distinctive mechanical response to changing colloid-nanoparticle size ratio, packing fractions, and the strength and spatial range of interparticle attractive and repulsive interactions. Small concentrations of nanoparticles can induce orders of magnitude elastic reinforcements typically involving single or double exponential growth with increasing colloid and/or nanoparticle packing fraction. Depending on the system, the elementary stress scale can be controlled by the colloid volume, the nanoparticle volume, or a combination of both. Connections between local microstructural organization and the mixture elastic shear modulus are established. The collective structure factor of the relatively dilute nanoparticle subsystem exhibits strong spatial ordering and large osmotic concentration fluctuations imprinted by the highly correlated dense colloidal subsystem. The relevance of the theoretical results for experimental mixtures with large size asymmetry, particularly in the context of 3D ink printing and additive manufacturing, are discussed.
Collapse
Affiliation(s)
- Subhasish Chaki
- Department of Materials Science, University of Illinois, Urbana, IL 61801, USA.
- Materials Research Laboratory, University of Illinois, Urbana, IL 61801, USA
- Institut für Theoretische Physik II-Soft Matter, Heinrich-Heine-Universität, Düsseldorf 40225, Germany
| | - Benito Román-Manso
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Larissa Senatus
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Jennifer A Lewis
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Kenneth S Schweizer
- Department of Materials Science, University of Illinois, Urbana, IL 61801, USA.
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
- Department of Chemical & Biomolecular Engineering, University of Illinois, Urbana, IL 61801, USA
- Materials Research Laboratory, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
2
|
Mutneja A, Schweizer KS. Microscopic theory of the elastic shear modulus and length-scale-dependent dynamic re-entrancy phenomena in very dense sticky particle fluids. SOFT MATTER 2024; 20:7284-7299. [PMID: 39240214 DOI: 10.1039/d4sm00693c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
We apply the hybrid projectionless dynamic theory (hybrid PDT) formulation of the elastically collective nonlinear Langevin equation (ECNLE) activated dynamics approach to study dense fluids of sticky spheres interacting with short range attractions. Of special interest is the problem of non-monotonic evolution with short range attraction strength of the elastic modulus ("re-entrancy") at very high packing fractions far beyond the ideal mode coupling theory (MCT) nonergodicity boundary. The dynamic force constraints explicitly treat the bare attractive forces that drive transient physical bond formation, while a projection approximation is employed for the singular hard-sphere potential. The resultant interference between repulsive and attractive forces contribution to the dynamic vertex results in the prediction of localization length and elastic modulus re-entrancy, qualitatively consistent with experiments. The non-monotonic evolution of the structural (alpha) relaxation time predicted by the ECNLE theory with the hybrid PDT approach is explored in depth as a function of packing fraction, attraction strength, and attraction range. Isochronal dynamic arrest boundaries based on activated relaxation display the classic non-monotonic glass melting form. Comparisons of these results with the corresponding predictions of ideal MCT, and also the ECNLE and NLE activated theories based on projection, reveal large qualitative differences. The consequences of stochastic trajectory fluctuations on intra-cage single particle dynamics with variable strength of attractions are also studied. Large dynamical heterogeneity effects in attractive glasses are properly captured. These include a rapidly increasing amplitude of the non-Gaussian parameter with packing fraction and a non-monotonic evolution with attraction strength, in qualitative accord with recent simulations. Extension of the microscopic theoretical approach to treat double yielding in attractive glass nonlinear rheology is possible.
Collapse
Affiliation(s)
- Anoop Mutneja
- Department of Materials Science, University of Illinois, Urbana, Illinois, 61801, USA
- Department of Materials Research Laboratory, University of Illinois, Urbana, Illinois, 61801, USA
| | - Kenneth S Schweizer
- Department of Materials Science, University of Illinois, Urbana, Illinois, 61801, USA
- Department of Materials Research Laboratory, University of Illinois, Urbana, Illinois, 61801, USA
- Department of Chemical & Biomolecular Engineering, University of Illinois, Urbana, Illinois, 61801, USA
- Department of Chemistry, University of Illinois, Urbana, Illinois, 61801, USA.
| |
Collapse
|
3
|
Martínez-Rivera J, Villada-Balbuena A, Sandoval-Puentes MA, Egelhaaf SU, Méndez-Alcaraz JM, Castañeda-Priego R, Escobedo-Sánchez MA. Modeling the structure and thermodynamics of multicomponent and polydisperse hard-sphere dispersions with continuous potentials. J Chem Phys 2023; 159:194110. [PMID: 37982478 DOI: 10.1063/5.0168098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/25/2023] [Indexed: 11/21/2023] Open
Abstract
A model system of identical particles interacting via a hard-sphere potential is essential in condensed matter physics; it helps to understand in and out of equilibrium phenomena in complex fluids, such as colloidal dispersions. Yet, most of the fixed time-step algorithms to study the transport properties of those systems have drawbacks due to the mathematical nature of the interparticle potential. Because of this, mapping a hard-sphere potential onto a soft potential has been recently proposed [Báez et al., J. Chem. Phys. 149, 164907 (2018)]. More specifically, using the second virial coefficient criterion, one can set a route to estimate the parameters of the soft potential that accurately reproduces the thermodynamic properties of a monocomponent hard-sphere system. However, real colloidal dispersions are multicomponent or polydisperse, making it important to find an efficient way to extend the potential model for dealing with such kind of many-body systems. In this paper, we report on the extension and applicability of the second virial coefficient criterion to build a description that correctly captures the phenomenology of both multicomponent and polydisperse hard-sphere dispersions. To assess the accuracy of the continuous potentials, we compare the structure of soft polydisperse systems with their hard-core counterpart. We also contrast the structural and thermodynamic properties of soft binary mixtures with those obtained through mean-field approximations and the Ornstein-Zernike equation for the two-component hard-sphere dispersion.
Collapse
Affiliation(s)
- Jaime Martínez-Rivera
- División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, Loma del Bosque 103, Colonia Lomas del Campestre, 37150 León, Guanjuato, Mexico
| | | | - Miguel A Sandoval-Puentes
- División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, Loma del Bosque 103, Colonia Lomas del Campestre, 37150 León, Guanjuato, Mexico
| | - Stefan U Egelhaaf
- Condensed Matter Physics Laboratory, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - José M Méndez-Alcaraz
- Departamento de Física, Cinvestav, Avenida Instituto Politécnico Nacional 2508, Colonia San Pedro Zacatenco, 07360 Ciudad de México, Mexico
| | - Ramón Castañeda-Priego
- Departamento de Ingeniería Física, División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, Loma del Bosque 103, Colonia Lomas del Campestre, 37150 León, Guanajuato, Mexico
| | | |
Collapse
|
4
|
Mei B, Schweizer KS. Theory of the effect of external stress on the activated dynamics and transport of dilute penetrants in supercooled liquids and glasses. J Chem Phys 2021; 155:054505. [PMID: 34364324 DOI: 10.1063/5.0056920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We generalize the self-consistent cooperative hopping theory for a dilute spherical penetrant or tracer activated dynamics in dense metastable hard sphere fluids and glasses to address the effect of external stress, the consequences of which are systematically established as a function of matrix packing fraction and penetrant-to-matrix size ratio. All relaxation processes speed up under stress, but the difference between the penetrant and matrix hopping (alpha relaxation) times decreases significantly with stress corresponding to less time scale decoupling. A dynamic crossover occurs at a critical "slaving onset" stress beyond which the matrix activated hopping relaxation time controls the penetrant hopping time. This characteristic stress increases (decreases) exponentially with packing fraction (size ratio) and can be well below the absolute yield stress of the matrix. Below the slaving onset, the penetrant hopping time is predicted to vary exponentially with stress, differing from the power law dependence of the pure matrix alpha time due to system-specificity of the stress-induced changes in the penetrant local cage and elastic barriers. An exponential growth of the penetrant alpha relaxation time with size ratio under stress is predicted, and at a fixed matrix packing fraction, the exponential relation between penetrant hopping time and stress for different size ratios can be collapsed onto a master curve. Direct connections between the short- and long-time activated penetrant dynamics and between the penetrant (or matrix) alpha relaxation time and matrix thermodynamic dimensionless compressibility are also predicted. The presented results should be testable in future experiments and simulations.
Collapse
Affiliation(s)
- Baicheng Mei
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, USA
| | - Kenneth S Schweizer
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
5
|
Mei B, Schweizer KS. Activated penetrant dynamics in glass forming liquids: size effects, decoupling, slaving, collective elasticity and correlation with matrix compressibility. SOFT MATTER 2021; 17:2624-2639. [PMID: 33528485 DOI: 10.1039/d0sm02215b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We employ the microscopic self-consistent cooperative hopping theory of penetrant activated dynamics in glass forming viscous liquids and colloidal suspensions to address new questions over a wide range of high matrix packing fractions and penetrant-to-matrix particle size ratios. The focus is on the mean activated relaxation time of smaller tracers in a hard sphere fluid of larger particle matrices. This quantity also determines the penetrant diffusion constant and connects directly with the structural relaxation time probed in an incoherent dynamic structure factor measurement. The timescale of the non-activated fast dissipative process is also studied and is predicted to follow power laws with the contact value of the penetrant-matrix pair correlation function and the penetrant-matrix size ratio. For long time penetrant relaxation, in the relatively lower packing fraction metastable regime the local cage barriers are dominant and matrix collective elasticity effects unimportant. As packing fraction and/or penetrant size grows, much higher barriers emerge and the collective elasticity associated with the correlated matrix dynamic displacement that facilitates penetrant hopping becomes important. This results in a non-monotonic variation with packing fraction of the degree of decoupling between the matrix and penetrant alpha relaxation times. The conditions required for penetrant hopping to become slaved to the matrix alpha process are determined, which depend mainly on the penetrant to matrix particle size ratio. By analyzing the absolute and relative importance of the cage and elastic barriers we establish a mechanistic understanding of the origin of the predicted exponential growth of the penetrant hopping time with size ratio predicted at very high packing fractions. A dynamics-thermodynamics power law connection between the penetrant activation barrier and the matrix dimensionless compressibility is established as a prediction of theory, with different scaling exponents depending on whether matrix collective elasticity effects are important. Quantitative comparisons with simulations of the penetrant relaxation time, diffusion constant, and transient localization length of tracers in dense colloidal suspensions and cold viscous liquids reveal good agreements. Multiple new predictions are made that are testable via future experiments and simulations. Extension of the theoretical approach to more complex systems of high experimental interest (nonspherical molecules, semiflexible polymers, crosslinked networks) interacting via variable hard or soft repulsions and/or short range attractions is possible, including under external deformation.
Collapse
Affiliation(s)
- Baicheng Mei
- Department of Materials Science, University of Illinois, Urbana, IL 61801, USA. and Materials Research Laboratory, University of Illinois, Urbana, IL 61801, USA
| | - Kenneth S Schweizer
- Department of Materials Science, University of Illinois, Urbana, IL 61801, USA. and Materials Research Laboratory, University of Illinois, Urbana, IL 61801, USA and Department of Chemistry, University of Illinois, Urbana, IL 61801, USA and Department of Chemical & Biomolecular Engineering, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
6
|
Zhou Y, Schweizer KS. PRISM Theory of Local Structure and Phase Behavior of Dense Polymer Nanocomposites: Improved Closure Approximation and Comparison with Simulation. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuxing Zhou
- Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | - Kenneth S. Schweizer
- Departments of Materials Science, Chemistry, Chemical & Biomolecular Engineering, and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Zhou Y, Schweizer KS. Theory of microstructure-dependent glassy shear elasticity and dynamic localization in melt polymer nanocomposites. J Chem Phys 2020; 153:114901. [PMID: 32962384 DOI: 10.1063/5.0021954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We present an integrated theoretical study of the structure, thermodynamic properties, dynamic localization, and glassy shear modulus of melt polymer nanocomposites (PNCs) that spans the three microstructural regimes of entropic depletion induced nanoparticle (NP) clustering, discrete adsorbed layer driven NP dispersion, and polymer-mediated bridging network. The evolution of equilibrium and dynamic properties with NP loading, total packing fraction, and strength of interfacial attraction is systematically studied based on a minimalist model. Structural predictions of polymer reference interaction site model integral equation theory are employed to establish the rich behavior of the interfacial cohesive force density, surface excess, and a measure of free volume as a function of PNC variables. The glassy dynamic shear modulus is predicted to be softened, reinforced, or hardly changed relative to the pure polymer melt depending on system parameters, as a result of the competing and qualitatively different influences of interfacial cohesion (physical bonding), free volume, and entropic depletion on dynamic localization and shear elasticity. The localization of polymer segments is the dominant factor in determining bulk PNC softening and reinforcement effects for moderate to strong interfacial attractions, respectively. While in the athermal entropy-dominated regime, the primary origin of mechanical reinforcement is the stress stored in the aggregated NP subsystem. The PNC shear modulus is often qualitatively correlated with the segment localization length but with notable exceptions. The present work provides the foundation for developing a theory of segmental relaxation, Tg changes, and collective NP dynamics in PNCs based on a self-consistent treatment of the cooperative activated motions of segments and NPs.
Collapse
Affiliation(s)
- Yuxing Zhou
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, USA
| | - Kenneth S Schweizer
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
8
|
Zhou Y, Yavitt BM, Zhou Z, Bocharova V, Salatto D, Endoh MK, Ribbe AE, Sokolov AP, Koga T, Schweizer KS. Bridging-Controlled Network Microstructure and Long-Wavelength Fluctuations in Silica–Poly(2-vinylpyridine) Nanocomposites: Experimental Results and Theoretical Analysis. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01391] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yuxing Zhou
- Department Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | - Benjamin M. Yavitt
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Zhengping Zhou
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Vera Bocharova
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Daniel Salatto
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Maya K. Endoh
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Alexander E. Ribbe
- Department for Polymer Science & Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Alexei P. Sokolov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Tadanori Koga
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Kenneth S. Schweizer
- Department Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
Zhou Y, Mei B, Schweizer KS. Integral equation theory of thermodynamics, pair structure, and growing static length scale in metastable hard sphere and Weeks-Chandler-Andersen fluids. Phys Rev E 2020; 101:042121. [PMID: 32422713 DOI: 10.1103/physreve.101.042121] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
We employ the Ornstein-Zernike integral equation theory with the Percus-Yevick (PY) and modified-Verlet (MV) closures to study the equilibrium structural and thermodynamic properties of metastable monodisperse hard sphere and continuous repulsion Weeks-Chandler-Andersen (WCA) fluids under density and temperature conditions where the system is strongly overcompressed or supercooled, respectively. The theoretical results are compared to crystal-avoiding simulations of these dense monodisperse model one-component fluids. The equation of state (EOS) and dimensionless compressibility are computed using both the virial and compressibility routes. For hard spheres, the MV-based virial route EOS and dimensionless compressibility are in very good agreement with simulation for all packing fractions, much better than the PY analogs. The corresponding MV-based predictions for the static structure factor are also very good. The amplitude of density fluctuations on the local cage scale and in the long wavelength limit, and three technically different measures of the density correlation length, are studied with both closures. All five properties grow in a roughly exponential manner with density in the metastable regime up to packing fractions of 58% with no sign of saturation. The MV-based results are in good agreement with our crystal-avoiding simulations. Interestingly, the density dependences of long and short wavelength quantities are closely related. The MV-based theory is also quite accurate for the thermodynamics and structure of supercooled monodisperse WCA fluids. Overall our findings are also relevant as critical input to microscopic theories that relate the equilibrium pair correlation function or static structure factor to dynamical constraints, barriers, and activated relaxation in glass-forming liquids.
Collapse
Affiliation(s)
- Yuxing Zhou
- Department of Material Science and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Baicheng Mei
- Department of Material Science and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Kenneth S Schweizer
- Department of Material Science and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Chemistry and Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|