1
|
Wittmer JP, Semenov AN, Baschnagel J. Strain correlation functions in isotropic elastic bodies: large wavelength limit for two-dimensional systems. SOFT MATTER 2023; 19:6140-6156. [PMID: 37545377 DOI: 10.1039/d3sm00424d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Strain correlation functions in two-dimensional isotropic elastic bodies are shown both theoretically (using the general structure of isotropic tensor fields) and numerically (using a glass-forming model system) to depend on the coordinates of the field variable (position vector r in real space or wavevector q in reciprocal space) and thus on the direction of the field vector and the orientation of the coordinate system. Since the fluctuations of the longitudinal and transverse components of the strain field in reciprocal space are known in the long-wavelength limit from the equipartition theorem, all components of the correlation function tensor field are imposed and no additional physical assumptions are needed. An observed dependence on the field vector direction thus cannot be used as an indication for anisotropy or for a plastic rearrangement. This dependence is different for the associated strain response field containing also information on the localized stress perturbation.
Collapse
Affiliation(s)
- J P Wittmer
- Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034 Strasbourg Cedex, France.
| | - A N Semenov
- Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034 Strasbourg Cedex, France.
| | - J Baschnagel
- Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034 Strasbourg Cedex, France.
| |
Collapse
|
2
|
Wittmer JP, Semenov AN, Baschnagel J. Correlations of tensor field components in isotropic systems with an application to stress correlations in elastic bodies. Phys Rev E 2023; 108:015002. [PMID: 37583199 DOI: 10.1103/physreve.108.015002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/28/2023] [Indexed: 08/17/2023]
Abstract
Correlation functions of components of second-order tensor fields in isotropic systems can be reduced to an isotropic fourth-order tensor field characterized by a few invariant correlation functions (ICFs). It is emphasized that components of this field depend in general on the coordinates of the field vector variable and thus on the orientation of the coordinate system. These angular dependencies are distinct from those of ordinary anisotropic systems. As a simple example of the procedure to obtain the ICFs we discuss correlations of time-averaged stresses in isotropic glasses where only one ICF in reciprocal space becomes a finite constant e for large sampling times and small wave vectors. It is shown that e is set by the typical size of the frozen-in stress components normal to the wave vectors, i.e., it is caused by the symmetry breaking of the stress for each independent configuration. Using the presented general mathematical formalism for isotropic tensor fields this finding explains in turn the observed long-range stress correlations in real space. Under additional but rather general assumptions e is shown to be given by a thermodynamic quantity, the equilibrium Young modulus E. We thus relate for certain isotropic amorphous bodies the existence of finite Young or shear moduli to the symmetry breaking of a stress component in reciprocal space.
Collapse
Affiliation(s)
- J P Wittmer
- Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034 Strasbourg Cedex, France
| | - A N Semenov
- Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034 Strasbourg Cedex, France
| | - J Baschnagel
- Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034 Strasbourg Cedex, France
| |
Collapse
|
3
|
Wittmer JP, Semenov AN, Baschnagel J. Different types of spatial correlation functions for non-ergodic stochastic processes of macroscopic systems. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:65. [PMID: 35933461 DOI: 10.1140/epje/s10189-022-00222-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Focusing on non-ergodic macroscopic systems, we reconsider the variances [Formula: see text] of time averages [Formula: see text] of time-series [Formula: see text]. The total variance [Formula: see text] (direct average over all time series) is known to be the sum of an internal variance [Formula: see text] (fluctuations within the meta-basins) and an external variance [Formula: see text] (fluctuations between meta-basins). It is shown that whenever [Formula: see text] can be expressed as a volume average of a local field [Formula: see text] the three variances can be written as volume averages of correlation functions [Formula: see text], [Formula: see text] and [Formula: see text] with [Formula: see text]. The dependences of the [Formula: see text] on the sampling time [Formula: see text] and the system volume V can thus be traced back to [Formula: see text] and [Formula: see text]. Various relations are illustrated using lattice spring models with spatially correlated spring constants. .
Collapse
Affiliation(s)
- J P Wittmer
- Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034, Strasbourg Cedex, France.
| | - A N Semenov
- Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034, Strasbourg Cedex, France
| | - J Baschnagel
- Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034, Strasbourg Cedex, France
| |
Collapse
|
4
|
Klochko L, Baschnagel J, Wittmer JP, Meyer H, Benzerara O, Semenov AN. Theory of length-scale dependent relaxation moduli and stress fluctuations in glass-forming and viscoelastic liquids. J Chem Phys 2022; 156:164505. [PMID: 35490000 DOI: 10.1063/5.0085800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The spatiotemporal correlations of the local stress tensor in supercooled liquids are studied both theoretically and by molecular dynamics simulations of a two-dimensional (2D) polydisperse Lennard-Jones system. Asymptotically exact theoretical equations defining the dynamical structure factor and all components of the stress correlation tensor for low wave-vector q are presented in terms of the generalized (q-dependent) shear and longitudinal relaxation moduli, G(q, t) and K(q, t). We developed a rigorous approach (valid for low q) to calculate K(q, t) in terms of certain bulk correlation functions (for q = 0), the static structure factor S(q), and thermal conductivity κ. The proposed approach takes into account both the thermostatting effect and the effect of polydispersity. The theoretical results for the (q, t)-dependent stress correlation functions are compared with our simulation data, and an excellent agreement is found for qb̄≲0.5 (with b̄ being the mean particle diameter) both above and below the glass transition without any fitting parameters. Our data are consistent with recently predicted (both theoretically and by simulations) long-range correlations of the shear stress quenched in heterogeneous glassy structures.
Collapse
Affiliation(s)
- L Klochko
- Institut Charles Sadron, CNRS-UPR 22, Université de Strasbourg, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
| | - J Baschnagel
- Institut Charles Sadron, CNRS-UPR 22, Université de Strasbourg, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
| | - J P Wittmer
- Institut Charles Sadron, CNRS-UPR 22, Université de Strasbourg, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
| | - H Meyer
- Institut Charles Sadron, CNRS-UPR 22, Université de Strasbourg, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
| | - O Benzerara
- Institut Charles Sadron, CNRS-UPR 22, Université de Strasbourg, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
| | - A N Semenov
- Institut Charles Sadron, CNRS-UPR 22, Université de Strasbourg, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
| |
Collapse
|
5
|
George G, Klochko L, Semenov AN, Baschnagel J, Wittmer JP. Simple models for strictly non-ergodic stochastic processes of macroscopic systems. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:125. [PMID: 34633552 DOI: 10.1140/epje/s10189-021-00129-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
We investigate simple models for strictly non-ergodic stochastic processes [Formula: see text] (t being the discrete time step) focusing on the expectation value v and the standard deviation [Formula: see text] of the empirical variance [Formula: see text] of finite time series [Formula: see text]. [Formula: see text] is averaged over a fluctuating field [Formula: see text] ([Formula: see text] being the microcell position) characterized by a quenched spatially correlated Gaussian field [Formula: see text]. Due to the quenched [Formula: see text]-field [Formula: see text] becomes a finite constant, [Formula: see text], for large sampling times [Formula: see text]. The volume dependence of the non-ergodicity parameter [Formula: see text] is investigated for different spatial correlations. Models with marginally long-ranged [Formula: see text]-correlations are successfully mapped on shear stress data from simulated amorphous glasses of polydisperse beads.
Collapse
Affiliation(s)
- G George
- Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034, Strasbourg Cedex, France
| | - L Klochko
- Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034, Strasbourg Cedex, France
| | - A N Semenov
- Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034, Strasbourg Cedex, France
| | - J Baschnagel
- Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034, Strasbourg Cedex, France
| | - J P Wittmer
- Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034, Strasbourg Cedex, France.
| |
Collapse
|
6
|
Klochko L, Baschnagel J, Wittmer JP, Semenov AN. Relaxation moduli of glass-forming systems: temperature effects and fluctuations. SOFT MATTER 2021; 17:7867-7892. [PMID: 34368819 DOI: 10.1039/d1sm00778e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Equilibrium and dynamical properties of a two-dimensional polydisperse colloidal model system are characterized by means of molecular dynamics (MD) and Monte Carlo (MC) simulations. We employed several methods to prepare quasi-equilibrated systems: in particular, by slow cooling and tempering with MD (method SC-MD), and by tempering with MC dynamics involving swaps of particle diameters (methods Sw-MD, Sw-MC). It is revealed that the Sw-methods are much more efficient for equilibration below the glass transition temperature Tg leading to denser and more rigid systems which show much slower self-diffusion and shear-stress relaxation than their counterparts prepared with the SC-MD method. The shear-stress relaxation modulus G(t) is obtained based on the classical stress-fluctuation relation. We demonstrate that the α-relaxation time τα obtained using a time-temperature superposition of G(t) shows a super-Arrhenius behavior with the VFT temperature T0 well below Tg. We also derive novel rigorous fluctuation relations providing isothermic and adiabatic compression relaxation moduli in the whole time range (including the short-time inertial regime) based on correlation data for thermostatted systems. It is also shown that: (i) the assumption of Gaussian statistics for stress fluctuations leads to accurate predictions of the variances of the fluctuation moduli for both shear (μF) and compression (ηF) at T⪆Tg. (ii) The long-time (quasi-static) isothermic and adiabatic moduli increase on cooling faster than the affine compression modulus ηA, and this leads to a monotonic temperature dependence of ηF which is qualitatively different from μF(T) showing a maximum near Tg.
Collapse
Affiliation(s)
- L Klochko
- Institut Charles Sadron, CNRS - UPR 22, Université de Strasbourg, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France.
| | | | | | | |
Collapse
|
7
|
Klochko L, Baschnagel J, Wittmer JP, Semenov AN. General relations to obtain the time-dependent heat capacity from isothermal simulations. J Chem Phys 2021; 154:164501. [PMID: 33940827 DOI: 10.1063/5.0046697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
It is well-known that time-dependent correlation functions related to temperature and energy can crucially depend on the thermostatting mechanism used in computer simulations of molecular systems. We argue, however, that linear response functions must be considered as universal properties of physical systems. This implies that the classical fluctuation equation for the transient heat capacity, cv(t), is not applicable to the thermostatted molecular dynamics (apart from long enough times). To improve on this point, we derive a number of exact general expressions for the frequency-dependent heat capacity in terms of energy correlation functions, valid for the Nosé-Hoover and some other thermostats. We also establish a general relation between auto- and cross correlation functions of energy and temperature. Recommendations on how to use these relations to maximize the numerical precision are provided. It is demonstrated that our approach allows us to obtain cv(t) for a supercooled liquid system with high precision and over many decades in time reflecting all pertinent relaxation processes.
Collapse
Affiliation(s)
- L Klochko
- Institut Charles Sadron, CNRS - UPR 22, Université de Strasbourg, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
| | - J Baschnagel
- Institut Charles Sadron, CNRS - UPR 22, Université de Strasbourg, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
| | - J P Wittmer
- Institut Charles Sadron, CNRS - UPR 22, Université de Strasbourg, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
| | - A N Semenov
- Institut Charles Sadron, CNRS - UPR 22, Université de Strasbourg, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
| |
Collapse
|
8
|
George G, Klochko L, Semenov AN, Baschnagel J, Wittmer JP. Fluctuations of non-ergodic stochastic processes. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:54. [PMID: 33866449 DOI: 10.1140/epje/s10189-021-00070-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
We investigate the standard deviation [Formula: see text] of the variance [Formula: see text] of time series [Formula: see text] measured over a finite sampling time [Formula: see text] focusing on non-ergodic systems where independent "configurations" c get trapped in meta-basins of a generalized phase space. It is thus relevant in which order averages over the configurations c and over time series k of a configuration c are performed. Three variances of [Formula: see text] must be distinguished: the total variance [Formula: see text] and its contributions [Formula: see text], the typical internal variance within the meta-basins, and [Formula: see text], characterizing the dispersion between the different basins. We discuss simplifications for physical systems where the stochastic variable x(t) is due to a density field averaged over a large system volume V. The relations are illustrated for the shear-stress fluctuations in quenched elastic networks and low-temperature glasses formed by polydisperse particles and free-standing polymer films. The different statistics of [Formula: see text] and [Formula: see text] are manifested by their different system-size dependences.
Collapse
Affiliation(s)
- G George
- Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034, Strasbourg Cedex, France
| | - L Klochko
- Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034, Strasbourg Cedex, France
| | - A N Semenov
- Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034, Strasbourg Cedex, France
| | - J Baschnagel
- Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034, Strasbourg Cedex, France
| | - J P Wittmer
- Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034, Strasbourg Cedex, France.
| |
Collapse
|
9
|
George G, Klochko L, Semenov AN, Baschnagel J, Wittmer JP. Ensemble fluctuations matter for variances of macroscopic variables. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:13. [PMID: 33683484 DOI: 10.1140/epje/s10189-020-00004-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Extending recent work on stress fluctuations in complex fluids and amorphous solids we describe in general terms the ensemble average [Formula: see text] and the standard deviation [Formula: see text] of the variance [Formula: see text] of time series [Formula: see text] of a stochastic process x(t) measured over a finite sampling time [Formula: see text]. Assuming a stationary, Gaussian and ergodic process, [Formula: see text] is given by a functional [Formula: see text] of the autocorrelation function h(t). [Formula: see text] is shown to become large and similar to [Formula: see text] if [Formula: see text] corresponds to a fast relaxation process. Albeit [Formula: see text] does not hold in general for non-ergodic systems, the deviations for common systems with many microstates are merely finite-size corrections. Various issues are illustrated for shear-stress fluctuations in simple coarse-grained model systems.
Collapse
Affiliation(s)
- G George
- Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034, Strasbourg Cedex, France
| | - L Klochko
- Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034, Strasbourg Cedex, France
| | - A N Semenov
- Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034, Strasbourg Cedex, France
| | - J Baschnagel
- Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034, Strasbourg Cedex, France
| | - J P Wittmer
- Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034, Strasbourg Cedex, France.
| |
Collapse
|