1
|
Nielsen JB, Holladay JD, Burningham AJ, Rapier-Sharman N, Ramsey JS, Skaggs TB, Nordin GP, Pickett BE, Woolley AT. Monolithic affinity columns in 3D printed microfluidics for chikungunya RNA detection. Anal Bioanal Chem 2023; 415:7057-7065. [PMID: 37801120 PMCID: PMC10840819 DOI: 10.1007/s00216-023-04971-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023]
Abstract
Mosquito-borne pathogens plague much of the world, yet rapid and simple diagnosis is not available for many affected patients. Using a custom stereolithography 3D printer, we created microfluidic devices with affinity monoliths that could retain, noncovalently attach a fluorescent tag, and detect oligonucleotide and viral RNA. We optimized the fluorescent binding and sample load times using an oligonucleotide sequence from chikungunya virus (CHIKV). We also tested the specificity of CHIKV capture relative to genetically similar Sindbis virus. Moreover, viral RNA from both viruses was flowed through capture columns to study the efficiency and specificity of the column for viral CHIKV. We detected ~107 loaded viral genome copies, which was similar to levels in clinical samples during acute infection. These results show considerable promise for development of this platform into a rapid mosquito-borne viral pathogen detection system.
Collapse
Affiliation(s)
- Jacob B Nielsen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - James D Holladay
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Addalyn J Burningham
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Naomi Rapier-Sharman
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Joshua S Ramsey
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Timothy B Skaggs
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Gregory P Nordin
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT, USA
| | - Brett E Pickett
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Adam T Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
2
|
Vardar E, Nam HY, Vythilingam G, Tan HL, Mohamad Wali HA, Engelhardt EM, Kamarul T, Zambelli PY, Samara E. A New Bioactive Fibrin Formulation Provided Superior Cartilage Regeneration in a Caprine Model. Int J Mol Sci 2023; 24:16945. [PMID: 38069268 PMCID: PMC10707130 DOI: 10.3390/ijms242316945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
The effective and long-term treatment of cartilage defects is an unmet need among patients worldwide. In the past, several synthetic and natural biomaterials have been designed to support functional articular cartilage formation. However, they have mostly failed to enhance the terminal stage of chondrogenic differentiation, leading to scar tissue formation after the operation. Growth factors substantially regulate cartilage regeneration by acting on receptors to trigger intracellular signaling and cell recruitment for tissue regeneration. In this study, we investigated the effect of recombinant insulin-like growth factor 1 (rIGF-1), loaded in fibrin microbeads (FibIGF1), on cartilage regeneration. rIGF-1-loaded fibrin microbeads were injected into full-thickness cartilage defects in the knees of goats. The stability, integration, and quality of tissue repair were evaluated at 1 and 6 months by gross morphology, histology, and collagen type II staining. The in vivo results showed that compared to plain fibrin samples, particularly at 6 months, FibIGF1 improved the functional cartilage formation, confirmed through gross morphology, histology, and collagen type II immunostaining. FibIGF1 could be a promising candidate for cartilage repair in the clinic.
Collapse
Affiliation(s)
- Elif Vardar
- Pediatric Orthopedic Department, Children’s Hospital, Chémin de Montétan 16, 1004 Lausanne, Switzerland; (E.V.); (E.-M.E.); (P.-Y.Z.)
| | - Hui Yin Nam
- Tissue Engineering Group, Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (H.Y.N.); (H.L.T.)
- Nanotechnology and Catalysis Research Centre (NANOCAT), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Ganesh Vythilingam
- Pediatric Surgery Unit, Department of Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Han Ling Tan
- Tissue Engineering Group, Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (H.Y.N.); (H.L.T.)
| | | | - Eva-Maria Engelhardt
- Pediatric Orthopedic Department, Children’s Hospital, Chémin de Montétan 16, 1004 Lausanne, Switzerland; (E.V.); (E.-M.E.); (P.-Y.Z.)
| | - Tunku Kamarul
- Tissue Engineering Group, Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (H.Y.N.); (H.L.T.)
| | - Pierre-Yves Zambelli
- Pediatric Orthopedic Department, Children’s Hospital, Chémin de Montétan 16, 1004 Lausanne, Switzerland; (E.V.); (E.-M.E.); (P.-Y.Z.)
| | - Eleftheria Samara
- Pediatric Orthopedic Department, Children’s Hospital, Chémin de Montétan 16, 1004 Lausanne, Switzerland; (E.V.); (E.-M.E.); (P.-Y.Z.)
| |
Collapse
|
3
|
Hu A, Chen L, Geng X, Zhu L, Liu Y, Yang K, Zhu H, Zhu C. Extraction of DNA from trace forensic samples with a modified lysis buffer and chitosan coated magnetic beads. Forensic Sci Int Genet 2023; 67:102932. [PMID: 37713982 DOI: 10.1016/j.fsigen.2023.102932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/17/2023]
Abstract
The trace amounts of human tissue cells or body fluids left at the crime scene are often mixed with inhibitors such as rust, pigments, and humic acid. The extraction of the DNA from the trace cells is crucial for the investigation of cases. Usually, specially designed magnetic nanoparticles were chosen by the case investigators to enrich and elute DNA, which was then used for polymerase chain reaction (PCR) and short tandem repeat (STR) analysis. The traditional approach often had the following problems, such as low DNA enrichment efficiency, possible DNA breakage, and complex operations. Here, the 1%(w/v) of chitosan (75% deacetylation degree) was used to modify the 50 nm magnetic nanoparticles to gain the Chitosan@Beads, which theoretically carried positively charged in the pH = 5 of lysis buffer so as to adsorb negatively charged DNA through electrostatic interactions. The XPS and FT-IR results demonstrated that chitosan was successfully attached to the surface of magnetic nanoparticles. A set of simulated samples, containing 20 mg/μL of humic acid, pigments, iron ions (Fe2+, Fe3+), and the coexistence of the above three substances, were prepared to simulate the case scene. Human bronchial epithelial cells were mixed with the 200 μL of the above simulated samples for DNA extraction. 400 μL of lysis buffer, 20 μL of proteinase K (10 mg/mL) and 20 μL of Chitosan@Beads solution (20 mg/mL) was used for cell disruption and DNA enrichment. The extraction sensitivity of Chitosan@Beads was confirmed to be 10 cells, superior to commercial reagent kits. The Chitosan@Beads@DNA can directly use for "In-situ PCR" with elution-free operations. The STR loci rate of DNA extracted by Chitosan@Beads was around 97.9%, higher than the commercial kit (66.7%). In short, we foresee here developed novel Chitosan@Beads and modified lysis buffer could provide a new model for the DNA extraction of forensic trace evidence.
Collapse
Affiliation(s)
- Anzhong Hu
- School of Basic Medicine, Anhui Medical University, Hefei 230032, China; Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Lin Chen
- Institute of Forensic Science, Department of Anhui Public Security, Hefei 230061, China
| | - Xuelei Geng
- Institute of Forensic Science, Department of Anhui Public Security, Hefei 230061, China
| | - Ling Zhu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Yong Liu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Ke Yang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Huaqing Zhu
- School of Basic Medicine, Anhui Medical University, Hefei 230032, China.
| | - Cancan Zhu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|