1
|
Tsuru S, Nagasaka M. Solvatochromism Observed in the X-ray Absorption Spectrum of Indole Dissolved in Water. J Phys Chem A 2025; 129:3020-3031. [PMID: 40116636 DOI: 10.1021/acs.jpca.5c00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Current developments in X-ray absorption spectroscopy (XAS) for liquid samples in the water window demand a rigorous understanding of the interactions between molecules or solute-solvent interactions observed in the spectra. Meanwhile, a theoretical description of such effects, in addition to inner-shell excitations, remains controversial. The controversy is mainly over whether the orbitals should be optimized in the final states or whether the orbital optimizations can be expressed by dynamic electron correlation. In the present work, we measured the XAS spectra of indole in aqueous solution at the carbon and nitrogen K-edges to compare them with those measured in the gas phase. Obvious solvatochromism was observed only in the XAS spectrum measured at the nitrogen K-edge. We then interpreted the observed solvatochromism by simulating spectra with both ΔSCF, where the orbitals were optimized in the final states, and the algebraic-diagrammatic construction through second order [ADC(2)], where the molecular orbitals optimized in the ground state were used throughout. The present results indicate that covalent interactions, such as hydrogen bonds, are the dominant causes of the solvation effects observed in XAS spectra. The present simulations with ΔSCF and ADC(2), in addition to some other reports, highlight the importance of optimizing the orbitals in the final inner-shell excited states for general inner-shell calculations with predictive accuracy.
Collapse
Affiliation(s)
- Shota Tsuru
- RIKEN Center for Computational Science, RIKEN, Minatojima-minami 7-1-26, Kobe 650-0047, Japan
| | - Masanari Nagasaka
- Institute for Molecular Science and Graduate Institute for Advanced Studies, SOKENDAI, Myodaiji, Okazaki 444-8585, Japan
| |
Collapse
|
2
|
Levenstein MA, Chevallard C, Malloggi F, Testard F, Taché O. Micro- and milli-fluidic sample environments for in situ X-ray analysis in the chemical and materials sciences. LAB ON A CHIP 2025; 25:1169-1227. [PMID: 39775751 DOI: 10.1039/d4lc00637b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
X-ray-based methods are powerful tools for structural and chemical studies of materials and processes, particularly for performing time-resolved measurements. In this critical review, we highlight progress in the development of X-ray compatible microfluidic and millifluidic platforms that enable high temporal and spatial resolution X-ray analysis across the chemical and materials sciences. With a focus on liquid samples and suspensions, we first present the origins of microfluidic sample environments for X-ray analysis by discussing some alternative liquid sample holder and manipulator technologies. The bulk of the review is then dedicated to micro- and milli-fluidic devices designed for use in the three main areas of X-ray analysis: (1) scattering/diffraction, (2) spectroscopy, and (3) imaging. While most research to date has been performed at synchrotron radiation facilities, the recent progress made using commercial and laboratory-based X-ray instruments is then reviewed here for the first time. This final section presents the exciting possibility of performing in situ and operando X-ray analysis in the 'home' laboratory and transforming microfluidic and millifluidic X-ray analysis into a routine method in physical chemistry and materials research.
Collapse
Affiliation(s)
- Mark A Levenstein
- Université Paris-Saclay, CEA, CNRS, NIMBE, LIONS, 91191, Gif-sur-Yvette, France.
| | - Corinne Chevallard
- Université Paris-Saclay, CEA, CNRS, NIMBE, LIONS, 91191, Gif-sur-Yvette, France.
| | - Florent Malloggi
- Université Paris-Saclay, CEA, CNRS, NIMBE, LIONS, 91191, Gif-sur-Yvette, France.
| | - Fabienne Testard
- Université Paris-Saclay, CEA, CNRS, NIMBE, LIONS, 91191, Gif-sur-Yvette, France.
| | - Olivier Taché
- Université Paris-Saclay, CEA, CNRS, NIMBE, LIONS, 91191, Gif-sur-Yvette, France.
| |
Collapse
|
3
|
Srivastava K, Boyle ND, Flaman GT, Ramaswami B, van den Berg A, van der Stam W, Burgess IJ, Odijk M. In situ spatiotemporal characterization and analysis of chemical reactions using an ATR-integrated microfluidic reactor. LAB ON A CHIP 2023; 23:4690-4700. [PMID: 37818681 DOI: 10.1039/d3lc00521f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Determining kinetic reaction parameters with great detail has been of utmost importance in the field of chemical reaction engineering. However, commonly used experimental and computational methods however are unable to provide sufficiently resolved spatiotemporal information that can aid in the process of understanding these chemical reactions. With our work, we demonstrate the use of a custom designed single-bounce ATR-integrated microfluidic reactor to obtain spatiotemporal resolution for in situ monitoring of chemical reactions. Having a single-bounce ATR accessory allows us to individually address different sensing areas, thereby providing the ability to obtain spatially and temporally resolved information. To further enhance the spatial resolution, we utilize the benefits of synchrotron IR radiation with the smallest beam spot-size ∼150 μm. An on-flow modular microreactor additionally allows us to monitor the chemical reaction in situ, where the temporal characterization can be controlled with the operational flowrate. With a unique combination of experimental measurements and numerical simulations, we characterize and analyse a model SN2 reaction. For a chemical reaction between benzyl bromide (BB) and sodium azide (SA) to produce benzyl azide (BA), we successfully show the capability of our device to determine the diffusion coefficients of BB and SA as 0.367 ± 0.115 10-9 m2 s-1 and 1.17 ± 0.723 10-9 m2 s-1, respectively. Finally, with the above characteristics of our device, we also calculate a reaction rate of k = 0.0005 (m3s-1mol-1) for the given chemical reaction.
Collapse
Affiliation(s)
- K Srivastava
- BIOS Lab on Chip Group, Mesa+ Institute of Nanotechnology and Max Planck Institute of Complex Fluid Dynamics, University of Twente, The Netherlands.
| | - N D Boyle
- Burgess Research Group, Department of Chemistry, University of Saskatchewan Canada, Canada.
| | - G T Flaman
- Burgess Research Group, Department of Chemistry, University of Saskatchewan Canada, Canada.
| | - B Ramaswami
- Burgess Research Group, Department of Chemistry, University of Saskatchewan Canada, Canada.
| | - A van den Berg
- BIOS Lab on Chip Group, Mesa+ Institute of Nanotechnology and Max Planck Institute of Complex Fluid Dynamics, University of Twente, The Netherlands.
| | - W van der Stam
- Inorganic Chemistry and Catalysis, Utrecht University, The Netherlands
| | - I J Burgess
- Burgess Research Group, Department of Chemistry, University of Saskatchewan Canada, Canada.
| | - M Odijk
- BIOS Lab on Chip Group, Mesa+ Institute of Nanotechnology and Max Planck Institute of Complex Fluid Dynamics, University of Twente, The Netherlands.
| |
Collapse
|
4
|
Brenker J, Henzler K, Borca CN, Huthwelker T, Alan T. X-ray compatible microfluidics for in situ studies of chemical state, transport and reaction of light elements in an aqueous environment using synchrotron radiation. LAB ON A CHIP 2022; 22:1214-1230. [PMID: 35170605 DOI: 10.1039/d1lc00996f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper presents an X-ray compatible microfluidic platform for in situ characterization of chemical reactions at synchrotron light sources. We demonstrate easy to implement techniques to probe reacting solutions as they first come into contact, and study the very first milliseconds of their reaction in real-time through X-ray absorption spectroscopy (XAS). The devices use polydimethylsiloxane (PDMS) microfluidic channels sandwiched between ultrathin, X-ray transparent silicon nitride observation windows and rigid substrates. The new approach has three key advantages: i) owing to the assembly techniques employed, the devices are suitable for both high energy and tender (1-5 keV) X-rays; ii) they can operate in a vacuum environment (a must for low energy X-rays) and iii) they are robust enough to survive a full 8 hour shift of continuous scanning with a micro-focused beam, providing higher spatial and thus greater time resolution than previous studies. The combination of these opens new opportunities for in situ studies. This has so far not been possible with Kapton or glass-based flow cells due to increased attenuation of the low energy beam passing through these materials. The devices provide a well-defined mixing region to collect spatial maps of spatially stable concentration profiles, and XAS point spectra to elucidate the chemical structure and characterize the chemical reactions. The versatility of the approach is demonstrated through in situ XAS measurements on the mixing of two reactants in a microfluidic laminar flow device, as well as a segmented droplet based system for time resolved analysis.
Collapse
Affiliation(s)
- Jason Brenker
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Australia.
| | - Katja Henzler
- Paul Scherrer Institute, Swiss Light Source, Villigen, Switzerland.
| | - Camelia N Borca
- Paul Scherrer Institute, Swiss Light Source, Villigen, Switzerland.
| | | | - Tuncay Alan
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Australia.
| |
Collapse
|
5
|
Micheal Raj P, Barbe L, Andersson M, De Albuquerque Moreira M, Haase D, Wootton J, Nehzati S, Terry AE, Friel RJ, Tenje M, Sigfridsson Clauss KGV. Fabrication and characterisation of a silicon-borosilicate glass microfluidic device for synchrotron-based hard X-ray spectroscopy studies. RSC Adv 2021; 11:29859-29869. [PMID: 35479529 PMCID: PMC9040903 DOI: 10.1039/d1ra05270e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/26/2021] [Indexed: 01/09/2023] Open
Abstract
Some of the most fundamental chemical building blocks of life on Earth are the metal elements. X-ray absorption spectroscopy (XAS) is an element-specific technique that can analyse the local atomic and electronic structure of, for example, the active sites in catalysts and energy materials and allow the metal sites in biological samples to be identified and understood. A microfluidic device capable of withstanding the intense hard X-ray beams of a 4th generation synchrotron and harsh chemical sample conditions is presented in this work. The device is evaluated at the K-edges of iron and bromine and the L 3-edge of lead, in both transmission and fluorescence mode detection and in a wide range of sample concentrations, as low as 0.001 M. The device is fabricated in silicon and glass with plasma etched microchannels defined in the silicon wafer before anodic bonding of the glass wafer into a complete device. The device is supported with a well-designed printed chip holder that made the microfluidic device portable and easy to handle. The chip holder plays a pivotal role in mounting the delicate microfluidic device on the beamline stage. Testing validated that the device was sufficiently robust to contain and flow through harsh acids and toxic samples. There was also no significant radiation damage to the device observed, despite focusing with intense X-ray beams for multiple hours. The quality of X-ray spectra collected is comparable to that from standard methods; hence we present a robust microfluidic device to analyse liquid samples using synchrotron XAS.
Collapse
Affiliation(s)
| | - Laurent Barbe
- Dept. Materials Science and Engineering, Science for Life Laboratory, Uppsala University Uppsala Sweden
| | - Martin Andersson
- Dept. Materials Science and Engineering, Science for Life Laboratory, Uppsala University Uppsala Sweden
| | | | | | | | | | - Ann E Terry
- MAX IV Laboratory, Lund University Lund Sweden
| | - Ross J Friel
- School of Information Technology, Halmstad University Halmstad Sweden
| | - Maria Tenje
- Dept. Materials Science and Engineering, Science for Life Laboratory, Uppsala University Uppsala Sweden
| | | |
Collapse
|
6
|
Probst J, Borca CN, Newton MA, van Bokhoven J, Huthwelker T, Stavrakis S, deMello A. In Situ X-ray Absorption Spectroscopy and Droplet-Based Microfluidics: An Analysis of Calcium Carbonate Precipitation. ACS MEASUREMENT SCIENCE AU 2021; 1:27-34. [PMID: 36785734 PMCID: PMC9836070 DOI: 10.1021/acsmeasuresciau.1c00005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Droplet-based microfluidic systems are ideally suited for the investigation of nucleation and crystallization processes. To best leverage the features of such platforms (including exquisite time resolution and high-throughput operation), sensitive and in situ detection schemes are needed to extract real-time chemical information about all species of interest. In this regard, the extension of conventional (UV, visible, and infrared) optical detection schemes to the X-ray region of the electromagnetic spectrum is of high current interest, as techniques such as X-ray absorption spectroscopy (XAS) provide for the element-specific investigation of the local chemical environment. Accordingly, herein, we report for the first time the integration of millisecond droplet-based microfluidics with XAS. Such a platform allows for the sensitive acquisition of X-ray absorption data from picoliter-volume droplets moving at high linear velocities. Significantly, the high-temporal resolution of the droplet-based microfluidic platform enables unprecedented access to the early stages of the reaction. Using such an approach, we demonstrate in situ monitoring of calcium carbonate precipitation by extracting XAS spectra at the early time points of the reaction with a dead time as low as 10 ms. We obtain insights into the kinetics of the formation of amorphous calcium carbonate (ACC) as a first species during the crystallization process by monitoring the proportion of calcium ions converted into ACC. Within the confined and homogeneous environment of picoliter-volume droplets, the ACC content reaches 60% over the first 130 ms. More generally, the presented method offers new opportunities for the real-time monitoring of fast chemical and biological processes.
Collapse
Affiliation(s)
- Julie Probst
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | | | - Mark A. Newton
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Jeroen van Bokhoven
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
- Paul
Scherrer Institute, 5232 Villigen, Switzerland
| | | | - Stavros Stavrakis
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Andrew deMello
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| |
Collapse
|
7
|
Maurice AA, Theisen J, Rai V, Olivier F, El Maangar A, Duhamet J, Zemb T, Gabriel JP. First online X‐ray fluorescence characterization of liquid‐liquid extraction in microfluidics. NANO SELECT 2021. [DOI: 10.1002/nano.202100133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Ange A. Maurice
- SCARCE Laboratory Energy Research Institute @ NTU (ERI@N) Nanyang Technology University Singapore
| | - Johannes Theisen
- ICSM CEA CNRS ENSCM Université de Montpellier Marcoule France
- CEA IRIG INAC MEM Université Grenoble Alpes Grenoble France
| | - Varun Rai
- SCARCE Laboratory Energy Research Institute @ NTU (ERI@N) Nanyang Technology University Singapore
| | - Fabien Olivier
- SCARCE Laboratory Energy Research Institute @ NTU (ERI@N) Nanyang Technology University Singapore
- CEA CNRS NIMBE LICSEN Université Paris‐Saclay Gif‐sur‐Yvette France
| | | | - Jean Duhamet
- CEA DES ISEC DMRC Université de Montpellier Marcoule France
| | - Thomas Zemb
- ICSM CEA CNRS ENSCM Université de Montpellier Marcoule France
| | - Jean‐Christophe P. Gabriel
- SCARCE Laboratory Energy Research Institute @ NTU (ERI@N) Nanyang Technology University Singapore
- CEA IRIG INAC MEM Université Grenoble Alpes Grenoble France
- CEA CNRS NIMBE LICSEN Université Paris‐Saclay Gif‐sur‐Yvette France
| |
Collapse
|
8
|
Nagasaka M, Kosugi N. Soft X-ray Absorption Spectroscopy for Observing Element-specific Intermolecular Interaction in Solution Chemistry. CHEM LETT 2021. [DOI: 10.1246/cl.200938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Masanari Nagasaka
- Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Nobuhiro Kosugi
- Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
9
|
Effect of chain length on the near edge X-ray absorption fine structure spectra of liquid n-Alkanes. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|