1
|
Bolotov MI, Munyayev VO, Smirnov LA, Osipov GV, Belykh I. Breathing and switching cyclops states in Kuramoto networks with higher-mode coupling. Phys Rev E 2024; 109:054202. [PMID: 38907462 DOI: 10.1103/physreve.109.054202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/10/2024] [Indexed: 06/24/2024]
Abstract
Cyclops states are intriguing cluster patterns observed in oscillator networks, including neuronal ensembles. The concept of cyclops states formed by two distinct, coherent clusters and a solitary oscillator was introduced by Munyaev et al. [Phys. Rev. Lett. 130, 107201 (2023)0031-900710.1103/PhysRevLett.130.107201], where we explored the surprising prevalence of such states in repulsive Kuramoto networks of rotators with higher-mode harmonics in the coupling. This paper extends our analysis to understand the mechanisms responsible for destroying the cyclops' states and inducing dynamical patterns called breathing and switching cyclops states. We first analytically study the existence and stability of cyclops states in the Kuramoto-Sakaguchi networks of two-dimensional oscillators with inertia as a function of the second coupling harmonic. We then describe two bifurcation scenarios that give birth to breathing and switching cyclops states. We demonstrate that these states and their hybrids are prevalent across a wide coupling range and are robust against a relatively large intrinsic frequency detuning. Beyond the Kuramoto networks, breathing and switching cyclops states promise to strongly manifest in other physical and biological networks, including coupled theta neurons.
Collapse
Affiliation(s)
- Maxim I Bolotov
- Department of Control Theory, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod, 603022, Russia
| | - Vyacheslav O Munyayev
- Department of Control Theory, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod, 603022, Russia
| | - Lev A Smirnov
- Department of Control Theory, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod, 603022, Russia
| | - Grigory V Osipov
- Department of Control Theory, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod, 603022, Russia
| | - Igor Belykh
- Department of Mathematics and Statistics and Neuroscience Institute, Georgia State University, P.O. Box 4110, Atlanta, Georgia 30302-410, USA
| |
Collapse
|
2
|
Nag Chowdhury S, Anwar MS, Ghosh D. Cluster formation due to repulsive spanning trees in attractively coupled networks. Phys Rev E 2024; 109:044314. [PMID: 38755838 DOI: 10.1103/physreve.109.044314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 03/22/2024] [Indexed: 05/18/2024]
Abstract
Ensembles of coupled nonlinear oscillators are a popular paradigm and an ideal benchmark for analyzing complex collective behaviors. The onset of cluster synchronization is found to be at the core of various technological and biological processes. The current literature has investigated cluster synchronization by focusing mostly on the case of attractive coupling among the oscillators. However, the case of two coexisting competing interactions is of practical interest due to their relevance in diverse natural settings, including neuronal networks consisting of excitatory and inhibitory neurons, the coevolving social model with voters of opposite opinions, and ecological plant communities with both facilitation and competition, to name a few. In the present article, we investigate the impact of repulsive spanning trees on cluster formation within a connected network of attractively coupled limit-cycle oscillators. We successfully predict which nodes belong to each cluster and the emergent frustration of the connected networks independent of the particular local dynamics at the network nodes. We also determine local asymptotic stability of the cluster states using an approach based on the formulation of a master stability function. We additionally validate the emergence of solitary states and antisynchronization for some specific choices of spanning trees and networks.
Collapse
Affiliation(s)
- Sayantan Nag Chowdhury
- Department of Environmental Science and Policy, University of California, Davis, Davis, California 95616, USA
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Md Sayeed Anwar
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India
| |
Collapse
|
3
|
Zheng Z, Xu C, Fan J, Liu M, Chen X. Order parameter dynamics in complex systems: From models to data. CHAOS (WOODBURY, N.Y.) 2024; 34:022101. [PMID: 38341762 DOI: 10.1063/5.0180340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/14/2023] [Indexed: 02/13/2024]
Abstract
Collective ordering behaviors are typical macroscopic manifestations embedded in complex systems and can be ubiquitously observed across various physical backgrounds. Elements in complex systems may self-organize via mutual or external couplings to achieve diverse spatiotemporal coordinations. The order parameter, as a powerful quantity in describing the transition to collective states, may emerge spontaneously from large numbers of degrees of freedom through competitions. In this minireview, we extensively discussed the collective dynamics of complex systems from the viewpoint of order-parameter dynamics. A synergetic theory is adopted as the foundation of order-parameter dynamics, and it focuses on the self-organization and collective behaviors of complex systems. At the onset of macroscopic transitions, slow modes are distinguished from fast modes and act as order parameters, whose evolution can be established in terms of the slaving principle. We explore order-parameter dynamics in both model-based and data-based scenarios. For situations where microscopic dynamics modeling is available, as prototype examples, synchronization of coupled phase oscillators, chimera states, and neuron network dynamics are analytically studied, and the order-parameter dynamics is constructed in terms of reduction procedures such as the Ott-Antonsen ansatz, the Lorentz ansatz, and so on. For complicated systems highly challenging to be well modeled, we proposed the eigen-microstate approach (EMP) to reconstruct the macroscopic order-parameter dynamics, where the spatiotemporal evolution brought by big data can be well decomposed into eigenmodes, and the macroscopic collective behavior can be traced by Bose-Einstein condensation-like transitions and the emergence of dominant eigenmodes. The EMP is successfully applied to some typical examples, such as phase transitions in the Ising model, climate dynamics in earth systems, fluctuation patterns in stock markets, and collective motion in living systems.
Collapse
Affiliation(s)
- Zhigang Zheng
- Institute of Systems Science, Huaqiao University, Xiamen 361021, China and College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Can Xu
- Institute of Systems Science, Huaqiao University, Xiamen 361021, China and College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Jingfang Fan
- School of Systems Science, Beijing Normal University, Beijing 100875, China and Institute of Nonequilibrium Systems, Beijing Normal University, Beijing 100875, China
| | - Maoxin Liu
- School of Systems Science, Beijing Normal University, Beijing 100875, China and Institute of Nonequilibrium Systems, Beijing Normal University, Beijing 100875, China
| | - Xiaosong Chen
- School of Systems Science, Beijing Normal University, Beijing 100875, China and Institute of Nonequilibrium Systems, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
Berner R, Lu A, Sokolov IM. Synchronization transitions in Kuramoto networks with higher-mode interaction. CHAOS (WOODBURY, N.Y.) 2023; 33:073138. [PMID: 37463093 DOI: 10.1063/5.0151038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/21/2023] [Indexed: 07/20/2023]
Abstract
Synchronization is an omnipresent collective phenomenon in nature and technology, whose understanding is still elusive for real-world systems in particular. We study the synchronization transition in a phase oscillator system with two nonvanishing Fourier-modes in the interaction function, hence going beyond the Kuramoto paradigm. We show that the transition scenarios crucially depend on the interplay of the two coupling modes. We describe the multistability induced by the presence of a second coupling mode. By extending the collective coordinate approach, we describe the emergence of various states observed in the transition from incoherence to coherence. Remarkably, our analysis suggests that, in essence, the two-mode coupling gives rise to states characterized by two independent but interacting groups of oscillators. We believe that these findings will stimulate future research on dynamical systems, including complex interaction functions beyond the Kuramoto-type.
Collapse
Affiliation(s)
- Rico Berner
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Annie Lu
- Department of Mathematics, Washington State University, Pullman, Washington 99164-3113, USA
| | - Igor M Sokolov
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| |
Collapse
|
5
|
Elaeva M, Blanter E, Shnirman M, Shapoval A. Asymmetry in the Kuramoto model with nonidentical coupling. Phys Rev E 2023; 107:064201. [PMID: 37464665 DOI: 10.1103/physreve.107.064201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 04/26/2023] [Indexed: 07/20/2023]
Abstract
Synchronization and desynchronization of coupled oscillators appear to be the key property of many physical systems. It is believed that to predict a synchronization (or desynchronization) event, the knowledge on the exact structure of the oscillatory network is required. However, natural sciences often deal with observations where the coupling coefficients are not available. In the present paper we suggest a way to characterize synchronization of two oscillators without the reconstruction of coupling. Our method is based on the Kuramoto chain with three oscillators with constant but nonidentical coupling. We characterize coupling in this chain by two parameters: the coupling strength s and disparity σ. We give an analytical expression of the boundary s_{max} of synchronization occurred when s>s_{max}. We propose asymmetry A of the generalized order parameter induced by the coupling disparity as a new characteristic of the synchronization between two oscillators. For the chain model with three oscillators we present the self-consistent inverse problem. We explore scaling properties of the asymmetry A constructed for the inverse problem. We demonstrate that the asymmetry A in the chain model is maximal when the coupling strength in the model reaches the boundary of synchronization s_{max}. We suggest that the asymmetry A may be derived from the phase difference of any two oscillators if one pretends that they are edges of an abstract chain with three oscillators. Performing such a derivation with the general three-oscillator Kuramoto model, we show that the crossover from the chain to general network of oscillators keeps the interrelation between the asymmetry A and synchronization. Finally, we apply the asymmetry A to describe synchronization of the solar magnetic field proxies and discuss its potential use for the forecast of solar cycle anomalies.
Collapse
Affiliation(s)
- M Elaeva
- Department of Higher Mathematics, HSE University, Moscow 109028, Russia
| | - E Blanter
- Institute of Earthquake Prediction Theory and Mathematical Geophysics RAS, Moscow 117997, Russia
| | - M Shnirman
- Institute of Earthquake Prediction Theory and Mathematical Geophysics RAS, Moscow 117997, Russia
| | - A Shapoval
- Department of Mathematics and Computer Science, University of Lodz, Lodz 90-238, Poland and Cybersecurity Center, Universidad Bernardo O'Higgins, Santiago 8370993, Chile
| |
Collapse
|
6
|
Munyayev VO, Bolotov MI, Smirnov LA, Osipov GV, Belykh I. Cyclops States in Repulsive Kuramoto Networks: The Role of Higher-Order Coupling. PHYSICAL REVIEW LETTERS 2023; 130:107201. [PMID: 36962033 DOI: 10.1103/physrevlett.130.107201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Repulsive oscillator networks can exhibit multiple cooperative rhythms, including chimera and cluster splay states. Yet, understanding which rhythm prevails remains challenging. Here, we address this fundamental question in the context of Kuramoto-Sakaguchi networks of rotators with higher-order Fourier modes in the coupling. Through analysis and numerics, we show that three-cluster splay states with two distinct coherent clusters and a solitary oscillator are the prevalent rhythms in networks with an odd number of units. We denote such tripod patterns cyclops states with the solitary oscillator reminiscent of the Cyclops' eye. As their mythological counterparts, the cyclops states are giants that dominate the system's phase space in weakly repulsive networks with first-order coupling. Astonishingly, the addition of the second or third harmonics to the Kuramoto coupling function makes the cyclops states global attractors practically across the full range of coupling's repulsion. Beyond the Kuramoto oscillators, we show that this effect is robustly present in networks of canonical theta neurons with adaptive coupling. At a more general level, our results suggest clues for finding dominant rhythms in repulsive physical and biological networks.
Collapse
Affiliation(s)
- Vyacheslav O Munyayev
- Department of Control Theory, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod 603022, Russia
| | - Maxim I Bolotov
- Department of Control Theory, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod 603022, Russia
| | - Lev A Smirnov
- Department of Control Theory, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod 603022, Russia
| | - Grigory V Osipov
- Department of Control Theory, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod 603022, Russia
| | - Igor Belykh
- Department of Mathematics and Statistics and Neuroscience Institute, Georgia State University, P.O. Box 4110, Atlanta, Georgia 30302-410, USA
| |
Collapse
|
7
|
Gengel E, Heifetz E. Minimal nonlinear dynamical system for the interaction between vorticity waves and shear flows. Phys Rev E 2022; 105:065109. [PMID: 35854600 DOI: 10.1103/physreve.105.065109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
This study is a direct follow-up of the paper by Heifetz and Guha [Phys. Rev. E 100, 043105 (2019)2470-004510.1103/PhysRevE.100.043105] on a minimal nonlinear dynamical system, describing a prototype of linearized two-dimensional shear instability. In that paper, the authors describe the instability in terms of an action at a distance between two vorticity waves, each of which propagates counter to its local mean flow as well as counter to the other. Here we add to the model the effect of mutual interaction between the waves and the mean flow, where growth of the waves reduces the mean shear and vice versa. This addition yields oscillatory Hamiltonian dynamics, including states of phase slipping and libration with finite-size wave amplitude oscillations. We find that wave-mean-flow dynamics emerging from unstable normal modes in the linearized stage are doomed to librate around the antiphased neutral configuration in which the waves hinder each other's counterpropagation rate. We discuss as well how the given dynamics relates to familiar models of phase oscillators.
Collapse
Affiliation(s)
- Erik Gengel
- Department of Geophysics, Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eyal Heifetz
- Department of Geophysics, Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
8
|
Munyayev VO, Bolotov MI, Smirnov LA, Osipov GV, Belykh IV. Stability of rotatory solitary states in Kuramoto networks with inertia. Phys Rev E 2022; 105:024203. [PMID: 35291064 DOI: 10.1103/physreve.105.024203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Solitary states emerge in oscillator networks when one oscillator separates from the fully synchronized cluster and oscillates with a different frequency. Such chimera-type patterns with an incoherent state formed by a single oscillator were observed in various oscillator networks; however, there is still a lack of understanding of how such states can stably appear. Here, we study the stability of solitary states in Kuramoto networks of identical two-dimensional phase oscillators with inertia and a phase-lagged coupling. The presence of inertia can induce rotatory dynamics of the phase difference between the solitary oscillator and the coherent cluster. We derive asymptotic stability conditions for such a solitary state as a function of inertia, network size, and phase lag that may yield either attractive or repulsive coupling. Counterintuitively, our analysis demonstrates that (1) increasing the size of the coherent cluster can promote the stability of the solitary state in the attractive coupling case and (2) the solitary state can be stable in small-size networks with all repulsive coupling. We also discuss the implications of our stability analysis for the emergence of rotatory chimeras.
Collapse
Affiliation(s)
- Vyacheslav O Munyayev
- Department of Control Theory, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod 603022, Russia
| | - Maxim I Bolotov
- Department of Control Theory, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod 603022, Russia
| | - Lev A Smirnov
- Department of Control Theory, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod 603022, Russia
- Institute of Applied Physics, Russian Academy of Sciences, Ul'yanova Str. 46, Nizhny Novgorod 603950, Russia
| | - Grigory V Osipov
- Department of Control Theory, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod 603022, Russia
| | - Igor V Belykh
- Department of Control Theory, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod 603022, Russia
- Department of Mathematics and Statistics, Georgia State University, P.O. Box 4110, Atlanta, Georgia 30302, USA
| |
Collapse
|
9
|
Franović I, Eydam S, Semenova N, Zakharova A. Unbalanced clustering and solitary states in coupled excitable systems. CHAOS (WOODBURY, N.Y.) 2022; 32:011104. [PMID: 35105111 DOI: 10.1063/5.0077022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
We discover the mechanisms of emergence and the link between two types of symmetry-broken states, the unbalanced periodic two-cluster states and solitary states, in coupled excitable systems with attractive and repulsive interactions. The prevalent solitary states in non-locally coupled arrays, whose self-organization is based on successive (order preserving) spiking of units, derive their dynamical features from the corresponding unbalanced cluster states in globally coupled networks. Apart from the states with successive spiking, we also find cluster and solitary states where the interplay of excitability and local multiscale dynamics gives rise to so-called leap-frog activity patterns with an alternating order of spiking between the units. We show that the noise affects the system dynamics by suppressing the multistability of cluster states and by inducing pattern homogenization, transforming solitary states into patterns of patched synchrony.
Collapse
Affiliation(s)
- Igor Franović
- Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Sebastian Eydam
- Neural Circuits and Computations Unit, RIKEN Center for Brain Science, 2-1 Hirosawa, 351-0106 Wako, Japan
| | - Nadezhda Semenova
- Institute of Physics and Department of Fundamental Medicine and Medical Technology, Saratov State University, Astrakhanskaya str. 83, Saratov 410012, Russia
| | - Anna Zakharova
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| |
Collapse
|
10
|
Hong H, Martens EA. A two-frequency-two-coupling model of coupled oscillators. CHAOS (WOODBURY, N.Y.) 2021; 31:083124. [PMID: 34470243 DOI: 10.1063/5.0056844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
We considered the phase coherence dynamics in a Two-Frequency and Two-Coupling (TFTC) model of coupled oscillators, where coupling strength and natural oscillator frequencies for individual oscillators may assume one of two values (positive/negative). The bimodal distributions for the coupling strengths and frequencies are either correlated or uncorrelated. To study how correlation affects phase coherence, we analyzed the TFTC model by means of numerical simulations and exact dimensional reduction methods allowing to study the collective dynamics in terms of local order parameters [S. Watanabe and S. H. Strogatz, Physica D 74(3-4), 197-253 (1994); E. Ott and T. M. Antonsen, Chaos 18(3), 037113 (2008)]. The competition resulting from distributed coupling strengths and natural frequencies produces nontrivial dynamic states. For correlated disorder in frequencies and coupling strengths, we found that the entire oscillator population splits into two subpopulations, both phase-locked (Lock-Lock) or one phase-locked, and the other drifting (Lock-Drift), where the mean-fields of the subpopulations maintain a constant non-zero phase difference. For uncorrelated disorder, we found that the oscillator population may split into four phase-locked subpopulations, forming phase-locked pairs which are either mutually frequency-locked (Stable Lock-Lock-Lock-Lock) or drifting (Breathing Lock-Lock-Lock-Lock), thus resulting in a periodic motion of the global synchronization level. Finally, we found for both types of disorder that a state of Incoherence exists; however, for correlated coupling strengths and frequencies, incoherence is always unstable, whereas it is only neutrally stable for the uncorrelated case. Numerical simulations performed on the model show good agreement with the analytic predictions. The simplicity of the model promises that real-world systems can be found which display the dynamics induced by correlated/uncorrelated disorder.
Collapse
Affiliation(s)
- Hyunsuk Hong
- Department of Physics and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, South Korea
| | - Erik A Martens
- Centre for Mathematical Sciences, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
11
|
Berner R, Yanchuk S, Maistrenko Y, Schöll E. Generalized splay states in phase oscillator networks. CHAOS (WOODBURY, N.Y.) 2021; 31:073128. [PMID: 34340340 DOI: 10.1063/5.0056664] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Networks of coupled phase oscillators play an important role in the analysis of emergent collective phenomena. In this article, we introduce generalized m-splay states constituting a special subclass of phase-locked states with vanishing mth order parameter. Such states typically manifest incoherent dynamics, and they often create high-dimensional families of solutions (splay manifolds). For a general class of phase oscillator networks, we provide explicit linear stability conditions for splay states and exemplify our results with the well-known Kuramoto-Sakaguchi model. Importantly, our stability conditions are expressed in terms of just a few observables such as the order parameter or the trace of the Jacobian. As a result, these conditions are simple and applicable to networks of arbitrary size. We generalize our findings to phase oscillators with inertia and adaptively coupled phase oscillator models.
Collapse
Affiliation(s)
- Rico Berner
- Institute of Theoretical Physics, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - Serhiy Yanchuk
- Institute of Mathematics, Technische Universität Berlin, Strasse des 17. Juni 136, 10623 Berlin, Germany
| | - Yuri Maistrenko
- Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Eckehard Schöll
- Institute of Theoretical Physics, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| |
Collapse
|
12
|
Kasatkin DV, Nekorkin VI. Transient circulant clusters in two-population network of Kuramoto oscillators with different rules of coupling adaptation. CHAOS (WOODBURY, N.Y.) 2021; 31:073112. [PMID: 34340335 DOI: 10.1063/5.0055578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
We considered a network consisting of two populations of phase oscillators, the interaction of which is determined by different rules for the coupling adaptation. The introduction of various adaptation rules leads to the suppression of splay states and the emergence of each population complex non-stationary behavior called transient circulant clusters. In such states, each population contains a pair of anti-phase clusters whose size and composition slowly change over time as a result of successive transitions of oscillators between clusters. We show that an increase in the mismatch of the adaptation rules makes it possible to stop the process of rearrangement of clusters in one or both populations of the network. Transitions to such modes are always preceded by the appearance of solitary states in one of the populations.
Collapse
Affiliation(s)
- D V Kasatkin
- Institute of Applied Physics of RAS, 46 Ul'yanov Street, 603950 Nizhny Novgorod, Russia
| | - V I Nekorkin
- Institute of Applied Physics of RAS, 46 Ul'yanov Street, 603950 Nizhny Novgorod, Russia
| |
Collapse
|
13
|
Shepelev IA, Muni SS, Schöll E, Strelkova GI. Repulsive inter-layer coupling induces anti-phase synchronization. CHAOS (WOODBURY, N.Y.) 2021; 31:063116. [PMID: 34241296 DOI: 10.1063/5.0054770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
We present numerical results for the synchronization phenomena in a bilayer network of repulsively coupled 2D lattices of van der Pol oscillators. We consider the cases when the network layers have either different or the same types of intra-layer coupling topology. When the layers are uncoupled, the lattice of van der Pol oscillators with a repulsive interaction typically demonstrates a labyrinth-like pattern, while the lattice with attractively coupled van der Pol oscillators shows a regular spiral wave structure. We reveal for the first time that repulsive inter-layer coupling leads to anti-phase synchronization of spatiotemporal structures for all considered combinations of intra-layer coupling. As a synchronization measure, we use the correlation coefficient between the symmetrical pairs of network nodes, which is always close to -1 in the case of anti-phase synchronization. We also study how the form of synchronous structures depends on the intra-layer coupling strengths when the repulsive inter-layer coupling is varied.
Collapse
Affiliation(s)
- Igor A Shepelev
- Institute of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - Sishu S Muni
- School of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand
| | - Eckehard Schöll
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - Galina I Strelkova
- Institute of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| |
Collapse
|
14
|
Shepelev IA, Muni SS, Vadivasova TE. Spatiotemporal patterns in a 2D lattice with linear repulsive and nonlinear attractive coupling. CHAOS (WOODBURY, N.Y.) 2021; 31:043136. [PMID: 34251249 DOI: 10.1063/5.0048324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/07/2021] [Indexed: 06/13/2023]
Abstract
We explore the emergence of a variety of different spatiotemporal patterns in a 2D lattice of self-sustained oscillators, which interact nonlocally through an active nonlinear element. A basic element is a van der Pol oscillator in a regime of relaxation oscillations. The active nonlinear coupling can be implemented by a radiophysical element with negative resistance in its current-voltage curve taking into account nonlinear characteristics (for example, a tunnel diode). We show that such coupling consists of two parts, namely, a repulsive linear term and an attractive nonlinear term. This interaction leads to the emergence of only standing waves with periodic dynamics in time and absence of any propagating wave processes. At the same time, many different spatiotemporal patterns occur when the coupling parameters are varied, namely, regular and complex cluster structures, such as chimera states. This effect is associated with the appearance of new periodic states of individual oscillators by the repulsive part of coupling, while the attractive term attenuates this effect. We also show influence of the coupling nonlinearity on the spatiotemporal dynamics.
Collapse
Affiliation(s)
- I A Shepelev
- Institute of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - S S Muni
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - T E Vadivasova
- Institute of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| |
Collapse
|
15
|
Ronge R, Zaks MA. Emergence and stability of periodic two-cluster states for ensembles of excitable units. Phys Rev E 2021; 103:012206. [PMID: 33601632 DOI: 10.1103/physreve.103.012206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
We study dynamics in ensembles of identical excitable units with global repulsive interaction. Starting from active rotators with additional higher order Fourier modes in on-site dynamics, we observe, at sufficiently strong repulsive coupling, large-scale collective oscillations in which the elements form two separate clusters. Transitions from quiescence to clustered oscillations are caused by global bifurcations involving the unstable clustered steady states. For clusters of equal size, the scenarios evolve either through simultaneous formation of two heteroclinic trajectories or through two simultaneous saddle-node bifurcations on invariant circles. If the sizes of clusters differ, two global bifurcations are separated in the parameter space. Stability of clusters with respect to splitting perturbations depends on the kind of higher order corrections to on-site dynamics; we show that for periodic oscillations of two equal clusters the Watanabe-Strogatz integrability marks a change of stability. By extending our studies to ensembles of voltage-coupled Morris-Lecar neurons, we demonstrate that similar bifurcations and switches in stability occur also for more elaborate models in higher dimensions.
Collapse
Affiliation(s)
- Robert Ronge
- Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Michael A Zaks
- Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| |
Collapse
|
16
|
Kirillov SY, Klinshov VV, Nekorkin VI. The role of timescale separation in oscillatory ensembles with competitive coupling. CHAOS (WOODBURY, N.Y.) 2020; 30:051101. [PMID: 32491880 DOI: 10.1063/5.0009074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
We study a heterogeneous population consisting of two groups of oscillatory elements, one with attractive and one with repulsive coupling. Moreover, we set different internal timescales for the oscillators of the two groups and concentrate on the role of this timescale separation in the collective behavior. Our results demonstrate that it may significantly modify synchronization properties of the system, and the implications are fundamentally different depending on the ratio between the group timescales. For the slower attractive group, synchronization properties are similar to the case of equal timescales. However, when the attractive group is faster, these properties significantly change and bistability appears. The other collective regimes such as frozen states and solitary states are also shown to be crucially influenced by timescale separation.
Collapse
Affiliation(s)
- S Yu Kirillov
- Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod 603950, Russia
| | - V V Klinshov
- Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod 603950, Russia
| | - V I Nekorkin
- Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod 603950, Russia
| |
Collapse
|