1
|
Niemeyer N, Neugebauer J. Response properties from frozen-density embedding approximate second-order coupled-cluster theory. J Chem Phys 2025; 162:174110. [PMID: 40314269 DOI: 10.1063/5.0260850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/07/2025] [Indexed: 05/03/2025] Open
Abstract
We present an implementation of the coupled frozen-density embedding (FDEc) formalism for the calculation of ground-state and excited-state properties, linear-response properties, and transition moments with the coupled cluster with the singles and approximate doubles (CC2) model. Following the general strategy introduced by Höfener and Visscher [J. Chem. Theory Comput.12, 549-557 (2016)], we derive the working equations needed for the evaluation of these properties and describe their implementation into our open-source quantum chemistry program, Serenity. Our implementation comprises both projection-based embedding as well as embedding based on non-additive kinetic-energy functionals and the corresponding potentials. It makes use of the resolution-of-the-identity technique and features-in addition to CC2-the algebraic diagrammatic construction scheme of second order, ADC(2), as well as spin-component-scaled and scaled-opposite spin versions of CC2 and ADC(2). We demonstrate the capabilities of this FDEc framework by analyzing excitation energies, singlet and triplet excitation-energy splittings as well as oscillator strengths of excitonically coupled dimers, the excited-state/difference dipole moment of a formaldehyde⋯water system, and the optical rotatory dispersion of a microsolvated organic chromophore. In the latter case, we reconsider the case of (P)-dimethylallene· (H2O)2, for which uncoupled CC2-based frozen-density embedding fails, while FDEc-time-dependent density-functional theory showed promising results in earlier work. Here, we can confirm that the inclusion of system-environment response couplings leads to agreement with supermolecular CC2 results, highlighting the importance of inter-subsystem couplings in response-property calculations for molecular aggregates.
Collapse
Affiliation(s)
- Niklas Niemeyer
- University of Münster, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Corrensstraße 36, 48149 Münster, Germany
| | - Johannes Neugebauer
- University of Münster, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
2
|
Hu G, Liu P, Jensen L. Calculating Molecular Polarizabilities Using Exact Frozen Density Embedding with External Orthogonality. J Chem Theory Comput 2024. [PMID: 39105755 DOI: 10.1021/acs.jctc.4c00692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Frozen density embedding (FDE) with freeze-thaw cycles is a formally exact embedding scheme. In practice, this method is limited to systems with small density overlaps when approximate nonadditive kinetic energy functionals are used. It has been shown that the use of approximate nonadditive kinetic energy functionals can be avoided when external orthogonality (EO) is enforced, and FDE can then generate exact results even for strongly overlapping subsystems. In this work, we present an implementation of exact FDEc-EO (coupled FDE TDDFT with EO) for the calculation of polarizabilities in the Amsterdam density functional program package. EO is enforced using the level-shift projection operator method, which ensures that orbitals between fragments are orthogonal. For pure functionals, we show that only the symmetric EO contributions to the induced density matrix are needed. This leads to a simplified implementation for the calculation of polarizability that can exactly reproduce the supermolecular TDDFT results. We further discuss the limitation of exact FDEc-EO in interpreting subsystem polarizabilities due to the nonunique partitioning of the total density. We show that this limitation is due to the fact that subsystem polarizability partitioning is dependent on how the subsystems are initially polarized. As supermolecular virtual orbitals are exactly reproduced, this dependence is attributed to the description of the occupied orbitals. In contrast, for excitations of subsystems that are localized within one subsystem, we show that the excitation energies are stable with respect to the order of polarization. This observation shows that impacts from the nonunique nature of exact FDE on subsystem properties can be minimized by better fragmentation of the supermolecular systems if the property is localized. For global properties like polarizability, this is not the case, and nonuniqueness remains independent of the fragmentation used.
Collapse
Affiliation(s)
- Gaohe Hu
- Department of Chemistry, The Pennsylvania State University, 104 Benkovic Building, University Park, Pennsylvania 16802, United States
| | - Pengchong Liu
- Department of Chemistry, The Pennsylvania State University, 104 Benkovic Building, University Park, Pennsylvania 16802, United States
| | - Lasse Jensen
- Department of Chemistry, The Pennsylvania State University, 104 Benkovic Building, University Park, Pennsylvania 16802, United States
| |
Collapse
|
3
|
Käfer S, Niemeyer N, Tölle J, Neugebauer J. Triplet Excitation-Energy Transfer Couplings from Subsystem Time-Dependent Density-Functional Theory. J Chem Theory Comput 2024; 20:2475-2490. [PMID: 38450637 DOI: 10.1021/acs.jctc.3c01365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
We present an implementation of triplet excitation-energy transfer (TEET) couplings based on subsystem-based time-dependent density-functional theory (sTDDFT). TEET couplings are systematically investigated by comparing "exact" and approximate variants of sTDDFT. We demonstrate that, while sTDDFT utilizing explicit approximate non-additive kinetic energy (NAKE) density functionals is well-suited for describing singlet EET processes, it is inadequate for characterizing TEET. However, we show that projection-based embedding (PbE)-based sTDDFT addresses the challenges faced by NAKE-sTDDFT and emerges as a promising method for accurately describing electronic couplings in TEET processes. We also introduce the mixed PbE-/NAKE-embedding procedure to investigate the TEET effects in solvated pairs of chromophores. This approach offers a good balance between accuracy and efficiency, enabling comprehensive studies of TEET processes in complex environments.
Collapse
Affiliation(s)
- Sabine Käfer
- Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, University of Münster, Corrensstraße 36, Münster 48149, Germany
| | - Niklas Niemeyer
- Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, University of Münster, Corrensstraße 36, Münster 48149, Germany
| | - Johannes Tölle
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Johannes Neugebauer
- Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, University of Münster, Corrensstraße 36, Münster 48149, Germany
| |
Collapse
|
4
|
Sen S, Visscher L. Towards the description of charge transfer states in solubilised LHCII using subsystem DFT. PHOTOSYNTHESIS RESEARCH 2023; 156:39-57. [PMID: 35988131 PMCID: PMC10070235 DOI: 10.1007/s11120-022-00950-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/04/2022] [Indexed: 05/05/2023]
Abstract
Light harvesting complex II (LHCII) in plants and green algae have been shown to adapt their absorption properties, depending on the concentration of sunlight, switching between a light harvesting and a non-harvesting or quenched state. In a recent work, combining classical molecular dynamics (MD) simulations with quantum chemical calculations (Liguori et al. in Sci Rep 5:15661, 2015) on LHCII, it was shown that the Chl611-Chl612 cluster of the terminal emitter domain can play an important role in modifying the spectral properties of the complex. In that work the importance of charge transfer (CT) effects was highlighted, in re-shaping the absorption intensity of the chlorophyll dimer. Here in this work, we investigate the combined effect of the local excited (LE) and CT states in shaping the energy landscape of the chlorophyll dimer. Using subsystem Density Functional Theory over the classical [Formula: see text]s MD trajectory we look explicitly into the excitation energies of the LE and the CT states of the dimer and their corresponding couplings. Upon doing so, we observe a drop in the excitation energies of the CT states, accompanied by an increase in the couplings between the LE/LE and the LE/CT states facilitated by a shorter interchromophoric distance upon equilibration. Both these changes in conjunction, effectively produces a red-shift of the low-lying mixed exciton/CT states of the supramolecular chromophore pair.
Collapse
Affiliation(s)
- Souloke Sen
- Division of Theoretical Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Lucas Visscher
- Division of Theoretical Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
5
|
Sen S, Senjean B, Visscher L. Characterization of excited states in time-dependent density functional theory using localized molecular orbitals. J Chem Phys 2023; 158:054115. [PMID: 36754801 DOI: 10.1063/5.0137729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Localized molecular orbitals are often used for the analysis of chemical bonds, but they can also serve to efficiently and comprehensibly compute linear response properties. While conventional canonical molecular orbitals provide an adequate basis for the treatment of excited states, a chemically meaningful identification of the different excited-state processes is difficult within such a delocalized orbital basis. In this work, starting from an initial set of supermolecular canonical molecular orbitals, we provide a simple one-step top-down embedding procedure for generating a set of orbitals, which are localized in terms of the supermolecule but delocalized over each subsystem composing the supermolecule. Using an orbital partitioning scheme based on such sets of localized orbitals, we further present a procedure for the construction of local excitations and charge-transfer states within the linear response framework of time-dependent density functional theory (TDDFT). This procedure provides direct access to approximate diabatic excitation energies and, under the Tamm-Dancoff approximation, also their corresponding electronic couplings-quantities that are of primary importance in modeling energy transfer processes in complex biological systems. Our approach is compared with a recently developed diabatization procedure based on subsystem TDDFT using projection operators, which leads to a similar set of working equations. Although both of these methods differ in the general localization strategies adopted and the type of basis functions (Slaters vs Gaussians) employed, an overall decent agreement is obtained.
Collapse
Affiliation(s)
- Souloke Sen
- Division of Theoretical Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Bruno Senjean
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Lucas Visscher
- Division of Theoretical Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
6
|
Niemeyer N, Eschenbach P, Bensberg M, Tölle J, Hellmann L, Lampe L, Massolle A, Rikus A, Schnieders D, Unsleber JP, Neugebauer J. The subsystem quantum chemistry program
Serenity. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Niklas Niemeyer
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - Patrick Eschenbach
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - Moritz Bensberg
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - Johannes Tölle
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - Lars Hellmann
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - Lukas Lampe
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - Anja Massolle
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - Anton Rikus
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - David Schnieders
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - Jan P. Unsleber
- Laboratorium für Physikalische Chemie ETH Zürich Zürich Switzerland
| | - Johannes Neugebauer
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| |
Collapse
|
7
|
De Santis M, Sorbelli D, Vallet V, Gomes AS, Storchi L, Belpassi L. Frozen-Density Embedding for Including Environmental Effects in the Dirac-Kohn-Sham Theory: An Implementation Based on Density Fitting and Prototyping Techniques. J Chem Theory Comput 2022; 18:5992-6009. [PMID: 36172757 PMCID: PMC9558305 DOI: 10.1021/acs.jctc.2c00499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Indexed: 11/28/2022]
Abstract
Frozen density embedding (FDE) represents an embedding scheme in which environmental effects are included from first-principles calculations by considering the surrounding system explicitly by means of its electron density. In the present paper, we extend the full four-component relativistic Dirac-Kohn-Sham (DKS) method, as implemented in the BERTHA code, to include environmental and confinement effects with the FDE scheme (DKS-in-DFT FDE). The implementation, based on the auxiliary density fitting techniques, has been enormously facilitated by BERTHA's python API (PyBERTHA), which facilitates the interoperability with other FDE implementations available through the PyADF framework. The accuracy and numerical stability of this new implementation, also using different auxiliary fitting basis sets, has been demonstrated on the simple NH3-H2O system, in comparison with a reference nonrelativistic implementation. The computational performance has been evaluated on a series of gold clusters (Aun, with n = 2, 4, 8) embedded into an increasing number of water molecules (5, 10, 20, 40, and 80 water molecules). We found that the procedure scales approximately linearly both with the size of the frozen surrounding environment (consistent with the underpinnings of the FDE approach) and with the size of the active system (in line with the use of density fitting). Finally, we applied the code to a series of heavy (Rn) and super-heavy elements (Cn, Fl, Og) embedded in a C60 cage to explore the confinement effect induced by C60 on their electronic structure. We compare the results from our simulations, with respect to more-approximate models employed in the atomic physics literature. Our results indicate that the specific interactions described by FDE are able to improve upon the cruder approximations currently employed, and, thus, they provide a basis from which to generate more-realistic radial potentials for confined atoms.
Collapse
Affiliation(s)
- Matteo De Santis
- Univ.
Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - Diego Sorbelli
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
- Istituto
di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle
Ricerche c/o Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Valérie Vallet
- Univ.
Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | | | - Loriano Storchi
- Istituto
di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle
Ricerche c/o Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
- Dipartimento
di Farmacia, Università degli Studi
‘G. D’Annunzio’, Via dei Vestini 31, 66100 Chieti, Italy
| | - Leonardo Belpassi
- Istituto
di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle
Ricerche c/o Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
8
|
Eschenbach P, Neugebauer J. Subsystem density-functional theory: A reliable tool for spin-density based properties. J Chem Phys 2022; 157:130902. [PMID: 36209003 DOI: 10.1063/5.0103091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Subsystem density-functional theory compiles a set of features that allow for efficiently calculating properties of very large open-shell radical systems such as organic radical crystals, proteins, or deoxyribonucleic acid stacks. It is computationally less costly than correlated ab initio wave function approaches and can pragmatically avoid the overdelocalization problem of Kohn-Sham density-functional theory without employing hard constraints on the electron-density. Additionally, subsystem density-functional theory calculations commonly start from isolated fragment electron densities, pragmatically preserving a priori specified subsystem spin-patterns throughout the calculation. Methods based on subsystem density-functional theory have seen a rapid development over the past years and have become important tools for describing open-shell properties. In this Perspective, we address open questions and possible developments toward challenging future applications in connection with subsystem density-functional theory for spin-dependent properties.
Collapse
Affiliation(s)
- Patrick Eschenbach
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Simulation, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Johannes Neugebauer
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Simulation, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
9
|
Liang W, Pei Z, Mao Y, Shao Y. Evaluation of molecular photophysical and photochemical properties using linear response time-dependent density functional theory with classical embedding: Successes and challenges. J Chem Phys 2022; 156:210901. [PMID: 35676148 PMCID: PMC9162785 DOI: 10.1063/5.0088271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/15/2022] [Indexed: 01/04/2023] Open
Abstract
Time-dependent density functional theory (TDDFT) based approaches have been developed in recent years to model the excited-state properties and transition processes of the molecules in the gas-phase and in a condensed medium, such as in a solution and protein microenvironment or near semiconductor and metal surfaces. In the latter case, usually, classical embedding models have been adopted to account for the molecular environmental effects, leading to the multi-scale approaches of TDDFT/polarizable continuum model (PCM) and TDDFT/molecular mechanics (MM), where a molecular system of interest is designated as the quantum mechanical region and treated with TDDFT, while the environment is usually described using either a PCM or (non-polarizable or polarizable) MM force fields. In this Perspective, we briefly review these TDDFT-related multi-scale models with a specific emphasis on the implementation of analytical energy derivatives, such as the energy gradient and Hessian, the nonadiabatic coupling, the spin-orbit coupling, and the transition dipole moment as well as their nuclear derivatives for various radiative and radiativeless transition processes among electronic states. Three variations of the TDDFT method, the Tamm-Dancoff approximation to TDDFT, spin-flip DFT, and spin-adiabatic TDDFT, are discussed. Moreover, using a model system (pyridine-Ag20 complex), we emphasize that caution is needed to properly account for system-environment interactions within the TDDFT/MM models. Specifically, one should appropriately damp the electrostatic embedding potential from MM atoms and carefully tune the van der Waals interaction potential between the system and the environment. We also highlight the lack of proper treatment of charge transfer between the quantum mechanics and MM regions as well as the need for accelerated TDDFT modelings and interpretability, which calls for new method developments.
Collapse
Affiliation(s)
- WanZhen Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Zheng Pei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Yuezhi Mao
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| |
Collapse
|
10
|
De Santis M, Vallet V, Gomes ASP. Environment Effects on X-Ray Absorption Spectra With Quantum Embedded Real-Time Time-Dependent Density Functional Theory Approaches. Front Chem 2022; 10:823246. [PMID: 35295974 PMCID: PMC8919347 DOI: 10.3389/fchem.2022.823246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
In this work we implement the real-time time-dependent block-orthogonalized Manby-Miller embedding (rt-BOMME) approach alongside our previously developed real-time frozen density embedding time-dependent density functional theory (rt-TDDFT-in-DFT FDE) code, and investigate these methods' performance in reproducing X-ray absorption spectra (XAS) obtained with standard rt-TDDFT simulations, for model systems comprised of solvated fluoride and chloride ions ([X@( H 2 O ) 8 - , X = F, Cl). We observe that for ground-state quantities such as core orbital energies, the BOMME approach shows significantly better agreement with supermolecular results than FDE for the strongly interacting fluoride system, while for chloride the two embedding approaches show more similar results. For the excited states, we see that while FDE (constrained not to have the environment densities relaxed in the ground state) is in good agreement with the reference calculations for the region around the K and L1 edges, and is capable of reproducing the splitting of the 1s1 (n + 1)p1 final states (n + 1 being the lowest virtual p orbital of the halides), it by and large fails to properly reproduce the 1s1 (n + 2)p1 states and misses the electronic states arising from excitation to orbitals with important contributions from the solvent. The BOMME results, on the other hand, provide a faithful qualitative representation of the spectra in all energy regions considered, though its intrinsic approximation of employing a lower-accuracy exchange-correlation functional for the environment induces non-negligible shifts in peak positions for the excitations from the halide to the environment. Our results thus confirm that QM/QM embedding approaches are viable alternatives to standard real-time simulations of X-ray absorption spectra of species in complex or confined environments.
Collapse
|
11
|
Tölle J, Neugebauer J. The Seamless Connection of Local and Collective Excited States in Subsystem Time-Dependent Density Functional Theory. J Phys Chem Lett 2022; 13:1003-1018. [PMID: 35061387 DOI: 10.1021/acs.jpclett.1c04023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The theoretical understanding of photoinduced processes in multichromophoric systems requires, as an essential ingredient, the possibility of accurately describing their electronically excited states. However, the size of these systems often prohibits the usage of conventional electronic-structure methods, so that often multiscale approaches based on phenomenologically motivated models are employed. In contrast, subsystem time-dependent density functional theory (sTDDFT) allows for a subsystem-based ab initio description of multichromophoric systems and therefore allows for, in principle, an exact description of photoinduced processes. This Perspective aims to outline the theoretical foundations and commonly used practical realizations as well as to illustrate benefits of recent developments and open issues in the field of sTDDFT. Prospective, potential future applications and possible methodological developments are discussed.
Collapse
Affiliation(s)
- Johannes Tölle
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Johannes Neugebauer
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
12
|
Treß RS, Hättig C, Höfener S. Employing Pseudopotentials to Tackle Excited-State Electron Spill-Out in Frozen Density Embedding Calculations. J Chem Theory Comput 2022; 18:1737-1747. [PMID: 35107998 DOI: 10.1021/acs.jctc.1c00732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In frozen density embedding (FDE), the properties of a target molecule are computed in the presence of an effective embedding potential, which accounts for the attractive and repulsive contributions of the environment. The formally exact embedding potential, however, is in practice calculated using explicit kinetic-energy functionals for which the resulting potentials are in many cases not repulsive enough to account fully for Pauli repulsion by the electrons of the environment and to compensate thereby the strong electron-nuclear attraction. For the excited states on the target molecule, this leads to charge spill-out when diffuse basis functions are included, which allow that valence electrons are excited to those regions of the environment where the strong nuclear attraction is not sufficiently compensated by repulsive contributions. To reduce this insufficiency, we propose in the present work the inclusion of atomic all-electron pseudopotentials for all environment atoms on top of the conventional embedding potential. In the current work, the pseudopotentials are applied for computing vertical excitation energies of local excited states in complex systems employing the second-order algebraic diagrammatic construction (ADC(2)) scheme. The proposed approach leads to significantly reduced charge spill-out and an improved agreement of FDE and supermolecular calculations in the frozen solvent approximation. In particular, when diffuse functions are employed, the mean absolute deviation (MAD) is reduced from 0.27 to 0.05 eV for the investigated cases.
Collapse
Affiliation(s)
- Robert S Treß
- Department of Theoretical Chemistry, Ruhr University Bochum, Bochum 44801, Germany
| | - Christof Hättig
- Department of Theoretical Chemistry, Ruhr University Bochum, Bochum 44801, Germany
| | - Sebastian Höfener
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| |
Collapse
|
13
|
Scholz L, Neugebauer J. Protein Response Effects on Cofactor Excitation Energies from First Principles: Augmenting Subsystem Time-Dependent Density-Functional Theory with Many-Body Expansion Techniques. J Chem Theory Comput 2021; 17:6105-6121. [PMID: 34524815 DOI: 10.1021/acs.jctc.1c00551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We investigate the possibility of describing protein response effects on a chromophore excitation by means of subsystem time-dependent density-functional theory (sTDDFT) in combination with a many-body expansion (MBE) approach. While sTDDFT is in principle intrinsically able to include such contributions, addressing cofactor excitations in protein models or entire proteins with full environment-response treatments is currently out of reach. Taking different model structures of the green fluorescent protein (GFP) and bovine rhodopsin as examples, we demonstrate that an embedded-MBE approach based on sTDDFT in its simplest version leads to a good agreement of the predicted protein response effect already at second order. To reproduce reference response effects from nonsubsystem TDDFT calculations quantitatively (error ≤ 5%), however, a third- or even fourth-order MBE may be required. For the latter case, we explore a selective inclusion of fourth-order terms that drastically reduces the computational burden. In addition, we demonstrate how this sTDDFT-MBE treatment can be utilized as an analysis tool to identify residues with dominant response contributions. This, in turn, can be employed to arrive at smaller structural models for light-absorbing proteins, which still feature all of the main characteristics in terms of photoresponse properties.
Collapse
Affiliation(s)
- Linus Scholz
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Johannes Neugebauer
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
14
|
Giannone G, Śmiga S, D'Agostino S, Fabiano E, Della Sala F. Plasmon Couplings from Subsystem Time-Dependent Density Functional Theory. J Phys Chem A 2021; 125:7246-7259. [PMID: 34403247 DOI: 10.1021/acs.jpca.1c05384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many applications in plasmonics are related to the coupling between metallic nanoparticles (MNPs) or between an emitter and a MNP. The theoretical analysis of such a coupling is thus of fundamental importance to analyze the plasmonic behavior and to design new systems. While classical methods neglect quantum and spill-out effects, time-dependent density functional theory (TD-DFT) considers all of them and with Kohn-Sham orbitals delocalized over the whole system. Thus, within TD-DFT, no definite separation of the subsystems (the single MNP or the emitter) and their couplings is directly available. This important feature is obtained here using the subsystem formulation of TD-DFT, which has been originally developed in the context of weakly interacting organic molecules. In subsystem TD-DFT, interacting MNPs are treated independently, thus allowing us to compute the plasmon couplings directly from the subsystem TD-DFT transition densities. We show that subsystem TD-DFT, as well as a simplified version of it in which kinetic contributions are neglected, can reproduce the reference TD-DFT calculations for gap distances greater than about 6 Å or even smaller in the case of hybrid plasmonic systems (i.e., molecules interacting with MNPs). We also show that the subsystem TD-DFT can be also used as a tool to analyze the impact of charge-transfer effects.
Collapse
Affiliation(s)
- Giulia Giannone
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Via Barsanti 14, Arnesano (LE) 73010, Italy.,Department of Mathematics and Physics "E. De Giorgi", University of Salento, Via Arnesano, Lecce 73100, Italy
| | - Szymon Śmiga
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudzia̧dzka 5, Toruń 87-100, Poland
| | - Stefania D'Agostino
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Via Barsanti 14, Arnesano (LE) 73010, Italy.,Department of Mathematics and Physics "E. De Giorgi", University of Salento, Via Arnesano, Lecce 73100, Italy.,Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, Lecce 73100, Italy
| | - Eduardo Fabiano
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Via Barsanti 14, Arnesano (LE) 73010, Italy.,Institute for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, Lecce 73100, Italy
| | - Fabio Della Sala
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Via Barsanti 14, Arnesano (LE) 73010, Italy.,Institute for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, Lecce 73100, Italy
| |
Collapse
|
15
|
Sen S, Mascoli V, Liguori N, Croce R, Visscher L. Understanding the Relation between Structural and Spectral Properties of Light-Harvesting Complex II. J Phys Chem A 2021; 125:4313-4322. [PMID: 33979158 PMCID: PMC8165694 DOI: 10.1021/acs.jpca.1c01467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/01/2021] [Indexed: 11/28/2022]
Abstract
Light-harvesting complex II (LHCII) is a pigment-protein complex present in higher plants and green algae. LHCII represents the main site of light absorption, and its role is to transfer the excitation energy toward the photosynthetic reaction centers, where primary energy conversion reactions take place. The optical properties of LHCII are known to depend on protein conformation. However, the relation between the structural and spectroscopic properties of the pigments is not fully understood yet. In this respect, previous classical molecular dynamics simulations of LHCII in a model membrane [Sci. Rep. 2015, 5, 1-10] have shown that the configuration and excitonic coupling of a chlorophyll (Chl) dimer functioning as the main terminal emitter of the complex are particularly sensitive to conformational changes. Here, we use quantum chemistry calculations to investigate in greater detail the effect of pigment-pigment interactions on the excited-state landscape. While most previous studies have used a local picture in which electrons are localized on single pigments, here we achieve a more accurate description of the Chl dimer by adopting a supramolecular picture where time-dependent density functional theory is applied to the whole system at once. Our results show that specific dimer configurations characterized by shorter inter-pigment distances can result in a sizable intensity decrease (up to 36%) of the Chl absorption bands in the visible spectral region. Such a decrease can be predicted only when accounting for Chl-Chl charge-transfer excitations, which is possible using the above-mentioned supramolecular approach. The charge-transfer character of the excitations is quantified by two types of analyses: one focusing on the composition of the excitations and the other directly on the observable total absorption intensities.
Collapse
Affiliation(s)
- Souloke Sen
- Amsterdam Center for Multiscale Modeling, Division of Theoretical Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Vincenzo Mascoli
- Biophysics of Photosynthesis, Dep. Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Nicoletta Liguori
- Biophysics of Photosynthesis, Dep. Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Roberta Croce
- Biophysics of Photosynthesis, Dep. Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Lucas Visscher
- Amsterdam Center for Multiscale Modeling, Division of Theoretical Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
16
|
Tölle J, Deilmann T, Rohlfing M, Neugebauer J. Subsystem-Based GW/Bethe-Salpeter Equation. J Chem Theory Comput 2021; 17:2186-2199. [PMID: 33683119 DOI: 10.1021/acs.jctc.0c01307] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Subsystem Density-Functional Theory and its extension to excited states, namely, subsystem Time-Dependent Density-Functional Theory, have been proven to be efficient and accurate fragmentation approaches for ground and excited states. In the present study we extend this approach to the subsystem-based description of total systems by means of GW and the Bethe-Salpeter equation (BSE). For this, we derive the working equations starting from a subsystem-based partitioning of the screened-Coulomb interaction for an arbitrary number of subsystems. Making use of certain approximations, we develop a parameter-free approach in which environmental screening contributions are effectively included for each subsystem. We demonstrate the applicability of these approximations by comparing quasi-particle energies and excitation energies from subsystem-based GW/BSE calculations to the supermolecular reference. Furthermore, we demonstrate the computational efficiency and the usefulness of this method for the description of photoinduced processes in complex chemical environments.
Collapse
Affiliation(s)
- Johannes Tölle
- Theoretische Organische Chemie Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, Münster, 48149, Germany
| | | | | | - Johannes Neugebauer
- Theoretische Organische Chemie Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, Münster, 48149, Germany
| |
Collapse
|
17
|
Tölle J, Cupellini L, Mennucci B, Neugebauer J. Electronic couplings for photo-induced processes from subsystem time-dependent density-functional theory: The role of the diabatization. J Chem Phys 2020; 153:184113. [PMID: 33187428 DOI: 10.1063/5.0022677] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Subsystem time-dependent density-functional theory (sTDDFT) making use of approximate non-additive kinetic energy (NAKE) functionals is known to be capable of describing excitation energy transfer processes in a variety of applications. Here, we show that sTDDFT, especially when combined with projection-based embedding (PbE), can be employed for the entire range of photo-induced electronic couplings essential for modeling photophysical properties of complex chemical and biological systems and therefore represents a complete toolbox for this class of problems. This means that it is capable of capturing the interaction/coupling associated with local- and charge-transfer (CT) excitons. However, this requires the choice of a reasonable diabatic basis. We therefore propose different diabatization strategies of the virtual orbital space in PbE-sTDDFT and show how CT excitations can be included in sTDDFT using NAKE functionals via a phenomenological approach. Finally, these electronic couplings are compared to couplings from a multistate fragment excitation difference (FED)-fragment charge difference (FCD) diabatization procedure. We show that both procedures, multistate FED-FCD and sTDDFT (with the right diabatization procedure chosen), lead to an overall good agreement for the electronic couplings, despite differences in their general diabatization strategy. We conclude that the entire range of photo-induced electronic couplings can be obtained using sTDDFT (with the right diabatization procedure chosen) in a black-box manner.
Collapse
Affiliation(s)
- Johannes Tölle
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster Corrensstraße 40, 48149 Münster, Germany
| | - Lorenzo Cupellini
- Università di Pisa, Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Benedetta Mennucci
- Università di Pisa, Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Johannes Neugebauer
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
18
|
De Santis M, Belpassi L, Jacob CR, Severo Pereira Gomes A, Tarantelli F, Visscher L, Storchi L. Environmental Effects with Frozen-Density Embedding in Real-Time Time-Dependent Density Functional Theory Using Localized Basis Functions. J Chem Theory Comput 2020; 16:5695-5711. [PMID: 32786918 PMCID: PMC8009524 DOI: 10.1021/acs.jctc.0c00603] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Indexed: 12/14/2022]
Abstract
Frozen-density embedding (FDE) represents a versatile embedding scheme to describe the environmental effect on electron dynamics in molecular systems. The extension of the general theory of FDE to the real-time time-dependent Kohn-Sham method has previously been presented and implemented in plane waves and periodic boundary conditions [Pavanello, M.; J. Chem. Phys. 2015, 142, 154116]. In the current paper, we extend our recent formulation of the real-time time-dependent Kohn-Sham method based on localized basis set functions and developed within the Psi4NumPy framework to the FDE scheme. The latter has been implemented in its "uncoupled" flavor (in which the time evolution is only carried out for the active subsystem, while the environment subsystems remain at their ground state), using and adapting the FDE implementation already available in the PyEmbed module of the scripting framework PyADF. The implementation was facilitated by the fact that both Psi4NumPy and PyADF, being native Python API, provided an ideal framework of development using the Python advantages in terms of code readability and reusability. We employed this new implementation to investigate the stability of the time-propagation procedure, which is based on an efficient predictor/corrector second-order midpoint Magnus propagator employing an exact diagonalization, in combination with the FDE scheme. We demonstrate that the inclusion of the FDE potential does not introduce any numerical instability in time propagation of the density matrix of the active subsystem, and in the limit of the weak external field, the numerical results for low-lying transition energies are consistent with those obtained using the reference FDE calculations based on the linear-response TDDFT. The method is found to give stable numerical results also in the presence of a strong external field inducing nonlinear effects. Preliminary results are reported for high harmonic generation (HHG) of a water molecule embedded in a small water cluster. The effect of the embedding potential is evident in the HHG spectrum reducing the number of the well-resolved high harmonics at high energy with respect to the free water. This is consistent with a shift toward lower ionization energy passing from an isolated water molecule to a small water cluster. The computational burden for the propagation step increases approximately linearly with the size of the surrounding frozen environment. Furthermore, we have also shown that the updating frequency of the embedding potential may be significantly reduced, much less than one per time step, without jeopardizing the accuracy of the transition energies.
Collapse
Affiliation(s)
- Matteo De Santis
- Dipartimento di
Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
- Istituto di Scienze
e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche
c/o Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Leonardo Belpassi
- Istituto di Scienze
e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche
c/o Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Christoph R. Jacob
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstr. 17, 38106 Braunschweig, Germany
| | | | - Francesco Tarantelli
- Dipartimento di
Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Lucas Visscher
- Theoretical Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Loriano Storchi
- Istituto di Scienze
e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche
c/o Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
- Dipartimento di Farmacia, Università
degli Studi ‘G. D’Annunzio’, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
19
|
Niemeyer N, Tölle J, Neugebauer J. Approximate versus Exact Embedding for Chiroptical Properties: Reconsidering Failures in Potential and Response. J Chem Theory Comput 2020; 16:3104-3120. [PMID: 32301613 DOI: 10.1021/acs.jctc.0c00125] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigate the suitability of subsystem time-dependent density-functional theory (sTDDFT) for describing chiroptical properties with a focus on optical rotation parameters. Our starting point is a new implementation of the recently proposed projection-based, coupled frozen-density embedding (FDEc) framework. We adapt the generalized, non-Hermitian formulation of TDDFT and derive corresponding expressions for regular and damped response properties from subsystem TDDFT. We verify that our implementation of this "exact" formulation allows to reproduce supermolecular results of electronic circular dichroism (ECD) spectra, of optical rotatory dispersion, and of polarizabilities. We present a systematic test of the main approximations typically introduced in practical frozen-density embedding (FDE) calculations of response properties: (i) the use of approximate nonadditive kinetic-energy (NAKE) functionals, which can be avoided through projection techniques, (ii) the use of monomer (subsystem) basis sets rather than supersystem basis sets, and (iii) the neglect of intersubsystem response coupling within the so-called uncoupled FDE (or FDEu) approximation. While approximation (i) is known to generally lead to large errors for covalently bound subsystems, we present cases in which either the basis set or the coupling step are similarly or even (much) more important. In particular, we explicitly demonstrate by comparison to a fully coupled calculation that missing intersubsystem response couplings are responsible for the failure of FDE reported in a previous study [ J. Chem. Theory Comput. 2015, 11, 5305-5315]. We show that good agreement with reference results can be obtained in this case even with standard NAKE approximations for the FDE potentials and efficient monomer basis sets, making calculations for larger systems well accessible.
Collapse
Affiliation(s)
- Niklas Niemeyer
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster Corrensstraße 40, 48149 Münster, Germany
| | - Johannes Tölle
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster Corrensstraße 40, 48149 Münster, Germany
| | - Johannes Neugebauer
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|