1
|
Cheng Y, Luo Q, Hong J, Feng S, Yuan Z, Wang C. Size-controlled fabrication of silicon nanopore arrays by silver-assisted chemical etching. J Chem Phys 2025; 162:174702. [PMID: 40309944 DOI: 10.1063/5.0264413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/08/2025] [Indexed: 05/02/2025] Open
Abstract
Silicon nanopore arrays are widely used in applications such as solution exchange, biomolecule detection, chemical analysis, and plant pathogen detection due to their high stability, long service life, and excellent compatibility with semiconductor and microfluidic technologies. However, existing fabrication methods such as wet etching, ion track etching, and electron beam lithography-assisted reactive ion etching face limitations, including poor size uniformity, uneven pore distribution, and high production costs. To address these challenges, this study proposes an improved metal-assisted chemical etching method for fabricating silicon nanopore arrays. This method combines silver nanoparticle-assisted etching with an anodic aluminum oxide template, promoting the orderly arrangement of silver nanoparticles on the silicon surface. By altering key factors such as nanoparticle size, etching time, temperature, and etchant oxidant concentration, the etching process was significantly optimized, with higher temperatures and oxidant concentrations accelerating nanopore formation. In addition, it is proposed that the anodic reaction likely involves the direct dissolution of silicon in its divalent state, with the gas generated during the etching process being a product of this reaction. Xenon lamp irradiation was used to fine-tune the etching kinetics, further optimizing the morphology of the silicon nanopores. The proposed technique is low-cost, highly adaptable, and reproducible, and has been successfully applied to design and optimize silicon nanopore arrays for various advanced applications. Compared to traditional industrial methods, this fabrication approach is more suitable for large-scale production, offering higher efficiency and better geometric control, making it ideal for applications in catalysis, sensing, and nanoelectronics.
Collapse
Affiliation(s)
- Yuxin Cheng
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou, China
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, Guangdong University of Technology, Guangzhou, China
- Guangdong Institute of Modern Agricultural Equipment, Guangzhou, China
| | - Qinglong Luo
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou, China
| | - Junjie Hong
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou, China
| | - Silu Feng
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou, China
| | - Zhishan Yuan
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, Guangdong University of Technology, Guangzhou, China
| | - Chengyong Wang
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
2
|
Hirata Y, Oda H, Osaki T, Takeuchi S. Biohybrid sensor for odor detection. LAB ON A CHIP 2021; 21:2643-2657. [PMID: 34132291 DOI: 10.1039/d1lc00233c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Biohybrid odorant sensors that directly integrate a biological olfactory system have been increasingly studied and are suggested to be the next generation of ultrasensitive sensors by taking advantage of the sensitivity and selectivity of living organisms. In this review, we provide a detailed description of the recent developments of biohybrid odorant sensors, especially considering the requisites for their perspective of on-site applications. We introduce the methodologies to effectively capture the biological signals from olfactory systems by readout devices, and describe the essential properties regarding the gaseous detection, stability, quality control, and portability. Moreover, we address the recent progress on multiple odorant recognition using multiple sensors as well as the current screening approaches for pairs of orphan receptors and ligands necessary for the extension of the currently available range of biohybrid sensors. Finally, we discuss our perspectives for the future for the development of practical odorant sensors.
Collapse
Affiliation(s)
- Yusuke Hirata
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Haruka Oda
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Toshihisa Osaki
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan and Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Shoji Takeuchi
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. and Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan and Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
3
|
Efficient Lipid Bilayer Formation by Dipping Lipid-Loaded Microperforated Sheet in Aqueous Solution. MICROMACHINES 2021; 12:mi12010053. [PMID: 33466555 PMCID: PMC7824848 DOI: 10.3390/mi12010053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
This paper describes a method for a bilayer lipid membrane (BLM) formation using a perforated sheet along with an open chamber. Microscopic observation of the formed membrane showed a typical droplet interface bilayer. We proved that the formed membrane was a BLM based on electrical measurements of the membrane protein α-hemolysin, which produces nanopores in BLMs. Unlike the conventional approach for BLM formation based on the droplet contact method, this method provides aqueous surfaces with no organic solvent coating layer. Hence, this method is suitable for producing BLMs that facilitate the direct addition of chemicals into the aqueous phase.
Collapse
|
4
|
Yamada T, Sugiura H, Mimura H, Kamiya K, Osaki T, Takeuchi S. Highly sensitive VOC detectors using insect olfactory receptors reconstituted into lipid bilayers. SCIENCE ADVANCES 2021; 7:7/3/eabd2013. [PMID: 33523876 PMCID: PMC7806217 DOI: 10.1126/sciadv.abd2013] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/18/2020] [Indexed: 05/10/2023]
Abstract
This paper reports a volatile organic compound (VOC) sensor based on olfactory receptors that were reconstituted into a lipid bilayer and used in a specifically designed gas flow system for rapid parts per billion (ppb)-level detection. This VOC sensor achieves both rapid detection and high detection probability because of its gas flow system and array design. Specifically, the gas flow system includes microchannels and hydrophobic microslits, which facilitate both the introduction of gas into the droplet and droplet mixing. We installed this system into a parallel lipid bilayer device and subsequently demonstrated parts per billion-level (0.5 ppb) detection of 1-octen-3-ol in human breath. Therefore, this system extends the various applications of biological odorant sensing, including breath diagnosis systems and environmental monitoring.
Collapse
Affiliation(s)
- Tetsuya Yamada
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| | - Hirotaka Sugiura
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| | - Hisatoshi Mimura
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| | - Koki Kamiya
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
- Division of Molecular Science, Graduate School of Science and Technology Gunma University, 1-5-1 Tenjin-cho, Kiryu city, Gunma 376-8515, Japan
| | - Toshihisa Osaki
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Shoji Takeuchi
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan.
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
5
|
Ito Y, Izawa Y, Osaki T, Kamiya K, Misawa N, Fujii S, Mimura H, Miki N, Takeuchi S. A Lipid-Bilayer-On-A-Cup Device for Pumpless Sample Exchange. MICROMACHINES 2020; 11:mi11121123. [PMID: 33352964 PMCID: PMC7767076 DOI: 10.3390/mi11121123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 01/12/2023]
Abstract
Lipid-bilayer devices have been studied for on-site sensors in the fields of diagnosis, food and environmental monitoring, and safety/security inspection. In this paper, we propose a lipid-bilayer-on-a-cup device for serial sample measurements using a pumpless solution exchange procedure. The device consists of a millimeter-scale cylindrical cup with vertical slits which is designed to steadily hold an aqueous solution and exchange the sample by simply fusing and splitting the solution with an external solution. The slit design was experimentally determined by the capabilities of both the retention and exchange of the solution. Using the optimized slit, a planar lipid bilayer was reconstituted with a nanopore protein at a microaperture allocated to the bottom of the cup, and the device was connected to a portable amplifier. The solution exchangeability was demonstrated by observing the dilution process of a blocker molecule of the nanopore dissolved in the cup. The pumpless solution exchange by the proposed cup-like device presents potential as a lipid-bilayer system for portable sensing applications.
Collapse
Affiliation(s)
- Yoshihisa Ito
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan; (Y.I.); (Y.I.); (T.O.); (K.K.); (N.M.); (S.F.); (H.M.); (N.M.)
- School of Integrated Design Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yusuke Izawa
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan; (Y.I.); (Y.I.); (T.O.); (K.K.); (N.M.); (S.F.); (H.M.); (N.M.)
- School of Integrated Design Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Toshihisa Osaki
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan; (Y.I.); (Y.I.); (T.O.); (K.K.); (N.M.); (S.F.); (H.M.); (N.M.)
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Koki Kamiya
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan; (Y.I.); (Y.I.); (T.O.); (K.K.); (N.M.); (S.F.); (H.M.); (N.M.)
| | - Nobuo Misawa
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan; (Y.I.); (Y.I.); (T.O.); (K.K.); (N.M.); (S.F.); (H.M.); (N.M.)
| | - Satoshi Fujii
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan; (Y.I.); (Y.I.); (T.O.); (K.K.); (N.M.); (S.F.); (H.M.); (N.M.)
| | - Hisatoshi Mimura
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan; (Y.I.); (Y.I.); (T.O.); (K.K.); (N.M.); (S.F.); (H.M.); (N.M.)
| | - Norihisa Miki
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan; (Y.I.); (Y.I.); (T.O.); (K.K.); (N.M.); (S.F.); (H.M.); (N.M.)
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Shoji Takeuchi
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan; (Y.I.); (Y.I.); (T.O.); (K.K.); (N.M.); (S.F.); (H.M.); (N.M.)
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Correspondence: ; Tel.: +81-3-5841-7056; Fax: +81-3-5841-7104
| |
Collapse
|
6
|
Fu J, Wu L, Qiao Y, Tu J, Lu Z. Microfluidic Systems Applied in Solid-State Nanopore Sensors. MICROMACHINES 2020; 11:mi11030332. [PMID: 32210148 PMCID: PMC7142662 DOI: 10.3390/mi11030332] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/08/2020] [Accepted: 03/20/2020] [Indexed: 01/04/2023]
Abstract
Microfluidic system, as a kind of miniature integrated operating platform, has been applied to solid-state nanopore sensors after many years of experimental study. In the process of introducing microfluidic into solid-state nanopore sensors, many novel device structures are designed due to the abundance of analytes and the diversity of detection methods. Here we review the fundamental setup of nanopore-based microfluidic systems and the developments and advancements that have been taking place in the field. The microfluidic systems with a multichannel strategy to elevate the throughput and efficiency of nanopore sensors are then presented. Multifunctional detection represented by optical-electrical detection, which is realized by microfluidic integration, is also described. A high integration microfluidic system with nanopore is further discussed, which shows the prototype of commercialization.
Collapse
Affiliation(s)
| | | | | | - Jing Tu
- Correspondence: (J.T.); (Z.L.); Tel.: +86-25-8379-2396 (J.T.); +86-25-8379-3779 (Z.L.)
| | - Zuhong Lu
- Correspondence: (J.T.); (Z.L.); Tel.: +86-25-8379-2396 (J.T.); +86-25-8379-3779 (Z.L.)
| |
Collapse
|