1
|
Nakamura T, Dangi BB, Wu L, Zhang Y, Schoendorff G, Gordon MS, Yang DS. Spin-orbit coupling of electrons on separate lanthanide atoms of Pr2O2 and its singly charged cation. J Chem Phys 2023; 159:244303. [PMID: 38131482 DOI: 10.1063/5.0185579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Although it plays a critical role in the photophysics and catalysis of lanthanides, spin-orbit coupling of electrons on individual lanthanide atoms in small clusters is not well understood. The major objective of this work is to probe such coupling of the praseodymium (Pr) 4f and 6s electrons in Pr2O2 and Pr2O2+. The approach combines mass-analyzed threshold ionization spectroscopy and spin-orbit multiconfiguration second-order quasi-degenerate perturbation theory. The energies of six ionization transitions are precisely measured; the adiabatic ionization energy of the neutral cluster is 38 045 (5) cm-1. Most of the electronic states involved in these transitions are identified as spin-orbit coupled states consisting of two or more electron spins. The electron configurations of these states are 4f46s2 for the neutral cluster and 4f46s for the singly charged cation, both in planar rhombus-type structures. The spin-orbit splitting due to the coupling of the electrons on the separate Pr atoms is on the order of hundreds of wavenumbers.
Collapse
Affiliation(s)
- Taiji Nakamura
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011-3111, USA
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Beni B Dangi
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | - Lu Wu
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | - Yuchen Zhang
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | - George Schoendorff
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011-3111, USA
- Propellants Branch, Rocket Propulsion Division, Aerospace Systems Directorate, Air Force Research Laboratory, AFRL/RQRP, Edwards Air Force Base, California 93524, USA
| | - Mark S Gordon
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011-3111, USA
| | - Dong-Sheng Yang
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| |
Collapse
|
2
|
Fischer I, Pratt ST. Photoelectron spectroscopy in molecular physical chemistry. Phys Chem Chem Phys 2022; 24:1944-1959. [PMID: 35023533 DOI: 10.1039/d1cp04984d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Photoelectron spectroscopy has long been a powerful method in the toolbox of experimental physical chemistry and molecular physics. Recent improvements in coincidence methods, charged-particle imaging, and electron energy resolution have greatly expanded the variety of environments in which photoelectron spectroscopy can be applied, as well as the range of questions that can now be addressed. In this Perspectives Article, we focus on selected recent studies that highlight these advances and research areas. The topics include reactive intermediates and new thermochemical data, high-resolution comparisons of experiment and theory using methods based on pulsed-field ionisation (PFI), and the application of photoelectron spectroscopy as an analytical tool to monitor chemical reactions in complex environments, like model flames, catalytic or high-temperature reactors.
Collapse
Affiliation(s)
- Ingo Fischer
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | - Stephen T Pratt
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA.
| |
Collapse
|
3
|
Nyambo S, Zhang Y, Yang DS. Vibronic transitions and spin-orbit coupling of three-membered metallacycles formed by lanthanide-mediated dehydrogenation of dimethylamine. J Chem Phys 2021; 155:034302. [PMID: 34293886 DOI: 10.1063/5.0059659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Metal-mediated N-H and C-H bond activation of aliphatic amines is an effective strategy for synthesizing biologically important molecules. Ln (Ln = La and Ce) atom reactions with dimethylamine are carried out in a pulsed-laser vaporization supersonic molecular beam source. A series of dehydrogenation species are observed with time-of-flight mass spectrometry, and the dehydrogenated Ln-containing species in the formula Ln(CH2NCH3) are characterized by single-photon mass-analyzed threshold ionization (MATI) spectroscopy and quantum chemical calculations. The theoretical calculations include density functional theory for both Ln species and multiconfiguration self-consistent field and quasi-degenerate perturbation theory for the Ce species. The MATI spectrum of La(CH2NCH3) consists of a single vibronic band system, which is assigned to the ionization of the doublet ground state of N-methyl-lanthanaaziridine. The MATI spectrum of Ce(CH2NCH3) displays two vibronic band systems, which are attributed to the ionization of two-pair lowest-energy spin-orbit coupling states of N-methyl-ceraaziridine. Both metallaaziridines are three-membered metallacycles and formed by the thermodynamically and kinetically favorable concerted dehydrogenation of the amino group and one of the methyl groups.
Collapse
Affiliation(s)
- Silver Nyambo
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | - Yuchen Zhang
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | - Dong-Sheng Yang
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| |
Collapse
|
4
|
Nyambo S, Zhang Y, Yang DS. Spectroscopic and computational characterization of lanthanide-mediated N–H and C–H bond activation of methylamine. J Chem Phys 2020; 153:064304. [DOI: 10.1063/5.0020837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Silver Nyambo
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | - Yuchen Zhang
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | - Dong-Sheng Yang
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| |
Collapse
|
5
|
Zhang Y, Yang DS. Spin-orbit coupling and vibronic transitions of Ce(C 3H 4) and Ce(C 3H 6) formed by the Ce reaction with propene: Mass-analyzed threshold ionization and relativistic quantum computation. J Chem Phys 2020; 152:144304. [PMID: 32295351 DOI: 10.1063/5.0002505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A Ce atom reaction with propene is carried out in a pulsed laser vaporization molecule beam source. Several Ce-hydrocarbon species formed by the C-H and C-C bond activation of propene are observed by time-of-flight mass spectrometry, and Ce(C3Hn) (n = 4 and 6) are characterized by mass-analyzed threshold ionization (MATI) spectroscopy and density functional theory, multiconfiguration, and relativistic quantum chemical calculations. The MATI spectrum of each species consists of two vibronic band systems, each with several vibronic bands. Ce(C3H6) is identified as an inserted species with Ce inserting into an allylic C-H bond of propene and Ce(C3H4) as a metallocycle through 1,2-vinylic dehydrogenation. Both species have a Cs structure with the Ce 4f16s1 ground valence electron configuration in the neutral molecule and the Ce 4f1 configuration in the singly charged ion. The two vibronic band systems observed for each species are attributed to the ionization of two pairs of the lowest spin-orbit coupled states with each pair being nearly degenerate.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | - Dong-Sheng Yang
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| |
Collapse
|