1
|
Whipham JW, Sabba M, Dagys L, Moustafa G, Bengs C, Levitt MH. Cross-correlated relaxation in the NMR of near-equivalent spin pairs: Longitudinal relaxation and long-lived singlet order. J Chem Phys 2024; 161:014112. [PMID: 38953443 DOI: 10.1063/5.0213997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
The evolution of nuclear spin state populations is investigated for the case of a 13C2-labeled triyne in solution, for which the near-equivalent coupled pairs of 13C nuclei experience cross-correlated relaxation mechanisms. Inversion-recovery experiments reveal different recovery curves for the main peak amplitudes, especially when the conversion of population imbalances to observable coherences is induced by a radio frequency pulse with a small flip angle. Measurements are performed over a range of magnetic fields by using a sample shuttle apparatus. In some cases, the time constant TS for decay of nuclear singlet order is more than 100 times larger than the time constant T1 for the equilibration of longitudinal magnetization. The results are interpreted by a theoretical model incorporating cross-correlated relaxation mechanisms, anisotropic rotational diffusion, and an external random magnetic field. A Lindbladian formalism is used to describe the dissipative dynamics of the spin system in an environment of finite temperature. Good agreement is achieved between theory and experiment.
Collapse
Affiliation(s)
- James W Whipham
- School of Chemistry, Southampton University, Southampton SO17 1BJ, United Kingdom
| | - Mohamed Sabba
- School of Chemistry, Southampton University, Southampton SO17 1BJ, United Kingdom
| | - Laurynas Dagys
- School of Chemistry, Southampton University, Southampton SO17 1BJ, United Kingdom
- Institute of Chemical Physics, Vilnius University, Vilnius LT-10257, Lithuania
| | - Gamal Moustafa
- School of Chemistry, Southampton University, Southampton SO17 1BJ, United Kingdom
| | - Christian Bengs
- School of Chemistry, Southampton University, Southampton SO17 1BJ, United Kingdom
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Malcolm H Levitt
- School of Chemistry, Southampton University, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
2
|
Sheberstov KF, Sonnefeld A, Bodenhausen G. Collective long-lived zero-quantum coherences in aliphatic chains. J Chem Phys 2024; 160:144308. [PMID: 38602293 DOI: 10.1063/5.0196808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/07/2024] [Indexed: 04/12/2024] Open
Abstract
In nuclear magnetic resonance, long-lived coherences constitute a class of zero-quantum (ZQ) coherences that have lifetimes that can be longer than the relaxation lifetimes T2 of transverse magnetization. So far, such coherences have been observed in systems with two coupled spins with spin quantum numbers I = 1/2, where a term S0T0+T0S0 in the density operator corresponds to a coherent superposition between the singlet S0 and the central triplet T0 state. Here, we report on the excitation and detection of collective long-lived coherences in AA'MM'XX' spin systems in molecules containing a chain of at least three methylene (-CH2-) groups. Several variants of excitation by polychromatic spin-lock induced crossing (poly-SLIC) are introduced that can excite a non-uniform distribution of the amplitudes of terms such as S0S0T0S0S0T0, S0T0S0S0T0S0, and T0S0S0T0S0S0. Once the radio frequency fields are switched off, these are not eigenstates, leading to ZQ precession involving all six protons, a process that can be understood as a propagation of spin order along the chain of CH2 groups before the reconversion into observable magnetization by a second poly-SLIC pulse that can be applied to any one or several of the CH2 groups. In the resulting 2D spectra, the ω2 domain shows SQ spectra with the chemical shifts of the CH2 groups irradiated during the reconversion, while the ω1 dimension shows ZQ signals in absorption mode with linewidths on the order of 0.1 Hz that are not affected by the inhomogeneity of the static magnetic field but can be broadened by chemical exchange as occurs in drug screening. The ZQ frequencies are primarily determined by differences ΔJ between vicinal J-couplings.
Collapse
Affiliation(s)
- Kirill F Sheberstov
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Anna Sonnefeld
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Geoffrey Bodenhausen
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
3
|
Stass DV. Geometrization for Energy Levels of Isotropic Hyperfine Hamiltonian Block and Related Central Spin Problems for an Arbitrarily Complex Set of Spin-1/2 Nuclei. Int J Mol Sci 2022; 23:15199. [PMID: 36499535 PMCID: PMC9739289 DOI: 10.3390/ijms232315199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/20/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Description of interacting spin systems relies on understanding the spectral properties of the corresponding spin Hamiltonians. However, the eigenvalue problems arising here lead to algebraic problems too complex to be analytically tractable. This is already the case for the simplest nontrivial (Kmax−1) block for an isotropic hyperfine Hamiltonian for a radical with spin-12 nuclei, where n nuclei produce an n-th order algebraic equation with n independent parameters. Systems described by such blocks are now physically realizable, e.g., as radicals or radical pairs with polarized nuclear spins, appear as closed subensembles in more general radical settings, and have numerous counterparts in related central spin problems. We provide a simple geometrization of energy levels in this case: given n spin-12 nuclei with arbitrary positive couplings ai, take an n-dimensional hyper-ellipsoid with semiaxes ai, stretch it by a factor of n+1 along the spatial diagonal (1, 1, …, 1), read off the semiaxes of thus produced new hyper-ellipsoid qi, augment the set {qi} with q0=0, and obtain the sought n+1 energies as Ek=−12qk2+14∑iai. This procedure provides a way of seeing things that can only be solved numerically, giving a useful tool to gain insights that complement the numeric simulations usually inevitable here, and shows an intriguing connection to discrete Fourier transform and spectral properties of standard graphs.
Collapse
Affiliation(s)
- Dmitri V. Stass
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia;
- International Tomography Center, 630090 Novosibirsk, Russia
| |
Collapse
|
4
|
Sonnefeld A, Razanahoera A, Pelupessy P, Bodenhausen G, Sheberstov K. Long-lived states of methylene protons in achiral molecules. SCIENCE ADVANCES 2022; 8:eade2113. [PMID: 36459545 PMCID: PMC10936052 DOI: 10.1126/sciadv.ade2113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
In nuclear magnetic resonance (NMR), the lifetimes of long-lived states (LLSs) are exquisitely sensitive to their environment. However, the number of molecules where such states can be excited has hitherto been rather limited. Here, it is shown that LLSs can be readily excited in many common molecules that contain two or more neighboring CH2 groups. Accessing such LLSs does not require any isotopic enrichment, nor does it require any stereogenic centers to lift the chemical equivalence of CH2 protons. LLSs were excited in a variety of metabolites, neurotransmitters, vitamins, amino acids, and other molecules. One can excite LLSs in several different molecules simultaneously. In combination with magnetic resonance imaging, LLSs can reveal a contrast upon noncovalent binding of ligands to macromolecules. This suggests new perspectives to achieve high-throughput parallel drug screening by NMR.
Collapse
Affiliation(s)
- Anna Sonnefeld
- Department of chemistry, École Normale Supérieure, PSL University, Paris, France
| | - Aiky Razanahoera
- Department of chemistry, École Normale Supérieure, PSL University, Paris, France
| | - Philippe Pelupessy
- Department of chemistry, École Normale Supérieure, PSL University, Paris, France
| | | | - Kirill Sheberstov
- Department of chemistry, École Normale Supérieure, PSL University, Paris, France
| |
Collapse
|
5
|
Rodin BA, Kozinenko VP, Kiryutin AS, Yurkovskaya AV, Eills J, Ivanov KL. Constant-adiabaticity pulse schemes for manipulating singlet order in 3-spin systems with weak magnetic non-equivalence. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 327:106978. [PMID: 33957556 DOI: 10.1016/j.jmr.2021.106978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Parahydrogen-induced polarization (PHIP) is a source of nuclear spin hyperpolarization, and this technique allows for the preparation of biomolecules for in vivo metabolic imaging. PHIP delivers hyperpolarization in the form of proton singlet order to a molecule, but most applications require that a heteronuclear (e.g. 13C or 15N) spin in the molecule is hyperpolarized. Here we present high field pulse methods to manipulate proton singlet order in the [1-13C]fumarate, and in particular to transfer the proton singlet order into 13C magnetization. We exploit adiabatic pulses, i.e., pulses with slowly ramped amplitude, and use constant-adiabaticity variants: the spin Hamiltonian is varied in such a way that the generalized adiabaticity parameter is time-independent. This allows for faster polarization transfer, and we achieve 96.2% transfer efficiency in thermal equilibrium experiments. We demonstrate this in experiments using hyperpolarization, and obtain 6.8% 13C polarization. This work paves the way for efficient hyperpolarization of nuclear spins in a variety of biomolecules, since the high-field pulse sequences allow individual spins to be addressed.
Collapse
Affiliation(s)
- Bogdan A Rodin
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia; Novosibirsk State University, Novosibirsk, 630090, Russia.
| | - Vitaly P Kozinenko
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia; Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Alexey S Kiryutin
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia; Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Alexandra V Yurkovskaya
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia; Novosibirsk State University, Novosibirsk, 630090, Russia
| | - James Eills
- Helmholtz Institute Mainz, Johannes Gutenberg University, 55099 Mainz, Germany
| | - Konstantin L Ivanov
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia; Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
6
|
Moysiadi A, Giustiniano F, Hall AMR, Cartlidge TAA, Brown LJ, Pileio G. Nuclear Spin Relaxation of Longitudinal and Singlet Order in Liquid-CO 2 Solutions. Front Chem 2021; 9:668044. [PMID: 33981674 PMCID: PMC8107397 DOI: 10.3389/fchem.2021.668044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Hyperpolarization techniques can enormously enhance the NMR signal thus allowing the exploitation of hyperpolarized substrates for in-vivo MRI applications. The short lifetime of hyperpolarized spin order poses significant limitations in such applications. Spin order storage can be prolonged through the use of long-lived spin states. Additionally, the storage of spin polarization-either in the form of longitudinal or singlet order-can be prolonged in low viscosity solutions. Here, we report the use of low viscosity liquid-CO2 solutions to store nuclear spin polarization in the form of longitudinal and singlet order for extended periods. Our results demonstrate that this storage time can be considerably sustained in liquid-CO2 solutions in comparison to other low viscosity solvents, opening up the possibility of new, exciting storage experiments in the future.
Collapse
Affiliation(s)
- Aliki Moysiadi
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | | | - Andrew M R Hall
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | | | - Lynda J Brown
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | - Giuseppe Pileio
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
7
|
Melchiorre G, Nelder C, Brown LJ, Dumez JN, Pileio G. Single-scan measurements of nuclear spin singlet order decay rates. Phys Chem Chem Phys 2021; 23:9851-9859. [PMID: 33908503 DOI: 10.1039/d1cp00807b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Measurements of singlet spin order decay rates are time consuming due to the long-lived nature of this form of order and the typical pseudo-2D mode of acquisition. Additionally, this acquisition modality is not ideal for experiments run on hyperpolarized order because of the single-shot nature of hyperpolarization techniques. We present a methodology based on spatial encoding that not only significantly reduces the duration of these experiments but also confers compatibility using spin hyperpolarization techniques. The method condenses in a single shot the variable delay array used to measure decay rates in conventional pseudo-2D relaxation experiments. This results in a substantial time saving factor and, more importantly, makes the experiment compatible with hyperpolarization techniques since only a single hyperpolarized sample is required. Furthermore, the presented method, besides offering savings on time and costs, avoids reproducibility concerns associated with repetition in the hyperpolarization procedure. The method accelerates the measurement and characterization of singlet order decay times, and, when coupled with hyperpolarization techniques, can facilitate the quest for systems with very long decay times.
Collapse
Affiliation(s)
- Giulia Melchiorre
- School of Chemistry, University of Southampton, SO17 1BJ, Southampton, UK.
| | | | | | | | | |
Collapse
|
8
|
Teleanu F, Sadet A, Vasos PR. Symmetry versus entropy: Long-lived states and coherences. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 122:63-75. [PMID: 33632418 DOI: 10.1016/j.pnmrs.2020.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/28/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
In recent years, new molecular symmetry-based approaches for magnetic resonance have been invented. The implications of these discoveries will be significant for molecular imaging via magnetic resonance, in vitro as well as in vivo, for quantum computing and for other fields. Since the initial observation in 2004 in Southampton that effective spin symmetry can be instilled in a molecule during magnetic resonance experiments, spin states that are resilient to relaxation mechanisms have been increasingly used. Most of these states are related to the nuclear singlet in a pair of J-coupled spins. Tailored relaxation rate constants for magnetization became available in molecules of different sizes and structures, as experimental developments broadened the scope of symmetry-adapted spin states. The ensuing access to timescales longer than the classically-attained ones by circa one order of magnitude allows the study of processes such as slow diffusion or slow exchange that were previously beyond reach. Long-lived states formed by differences between populations of singlets and triplets have overcome the limitations imposed by longitudinal relaxation times (T1) by factors up to 40. Long-lived coherences formed by superpositions of singlets and triplets have overcome the limit of classical transverse coherence (T2) by a factor 9. We present here an overview of the development and applications of long-lived states (LLS) and long-lived coherences (LLC's) and considerations on future perspectives.
Collapse
Affiliation(s)
- Florin Teleanu
- Extreme Light Infrastructure - Nuclear Physics ELI-NP, Laser Gamma Experiments Department (LGED), "Horia Hulubei" National Institute for Physics and Nuclear Engineering IFIN-HH, 30 Reactorului Street, RO-077125 Bucharest-Măgurele, Romania; College for Advanced Performance Studies, Babeș-Bolyai University, Mihail Kogălniceanu Street 1, Cluj-Napoca, Romania; Interdisciplinary School of Doctoral Studies, University of Bucharest, B-dul Regina Elisabeta, Bucharest, Romania
| | - Aude Sadet
- Extreme Light Infrastructure - Nuclear Physics ELI-NP, Laser Gamma Experiments Department (LGED), "Horia Hulubei" National Institute for Physics and Nuclear Engineering IFIN-HH, 30 Reactorului Street, RO-077125 Bucharest-Măgurele, Romania
| | - Paul R Vasos
- Extreme Light Infrastructure - Nuclear Physics ELI-NP, Laser Gamma Experiments Department (LGED), "Horia Hulubei" National Institute for Physics and Nuclear Engineering IFIN-HH, 30 Reactorului Street, RO-077125 Bucharest-Măgurele, Romania; Interdisciplinary School of Doctoral Studies, University of Bucharest, B-dul Regina Elisabeta, Bucharest, Romania.
| |
Collapse
|
9
|
Rodin BA, Bengs C, Kiryutin AS, Sheberstov KF, Brown LJ, Brown RCD, Yurkovskaya AV, Ivanov KL, Levitt MH. Algorithmic cooling of nuclear spins using long-lived singlet order. J Chem Phys 2020; 152:164201. [PMID: 32357786 DOI: 10.1063/5.0006742] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Algorithmic cooling methods manipulate an open quantum system in order to lower its temperature below that of the environment. We achieve significant cooling of an ensemble of nuclear spin-pair systems by exploiting the long-lived nuclear singlet state, which is an antisymmetric quantum superposition of the "up" and "down" Zeeman states. The effect is demonstrated by nuclear magnetic resonance experiments on a molecular system containing a coupled pair of near-equivalent 13C nuclei. The populations of the system are subjected to a repeating sequence of cyclic permutations separated by relaxation intervals. The long-lived nuclear singlet order is pumped well beyond the unitary limit. The pumped singlet order is converted into nuclear magnetization which is enhanced by 21% relative to its thermal equilibrium value.
Collapse
Affiliation(s)
- Bogdan A Rodin
- International Tomography Center SB RAS, Novosibirsk, Russia
| | - Christian Bengs
- Department of Chemistry, Southampton University, Southampton SO17 1BJ, United Kingdom
| | | | - Kirill F Sheberstov
- Johannes Gutenberg-Universität, Helmholtz Institute Mainz, Mainz 55099, Germany
| | - Lynda J Brown
- Department of Chemistry, Southampton University, Southampton SO17 1BJ, United Kingdom
| | - Richard C D Brown
- Department of Chemistry, Southampton University, Southampton SO17 1BJ, United Kingdom
| | | | | | - Malcolm H Levitt
- Department of Chemistry, Southampton University, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
10
|
Affiliation(s)
- P J Hore
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Konstantin L Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, USA
| |
Collapse
|