1
|
La-Rostami F, Scharf A, Albert C, Wax N, Creydt M, Illarionov B, Bacher A, Weber S, Fischer M. Adaptive Laboratory Evolution of Flavin Functionality Identifies Dihydrolipoyl Dehydrogenase as One of the Critical Points for the Activity of 7,8-Didemethyl-Riboflavin as a Surrogate for Riboflavin in Escherichia coli. Molecules 2024; 29:5891. [PMID: 39769980 PMCID: PMC11677807 DOI: 10.3390/molecules29245891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/29/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Riboflavin analogs lacking one methyl group (7α or 8α) can still serve as a surrogate for riboflavin in riboflavin-deficient microorganisms or animals. The absence of both methyl groups at once completely abolishes this substitution capability. To elucidate the molecular mechanisms behind this phenomenon, we performed an adaptive laboratory evolution experiment (in triplicate) on an E. coli strain auxotrophic for riboflavin. As a result, the riboflavin requirement of the E. coli strain was reduced ~10-fold in the presence of 7,8-didemethyl-riboflavin. The whole genome sequencing of E. coli strains isolated from three experiments revealed two mutation hotspots: lpdA coding for the flavoenzyme dihydrolipoyl dehydrogenase (LpdA), and ompF coding for the major outer membrane protein. In order to investigate the essentiality of flavin's methyl groups to LpdA, the wild type and mutant variants of lpdA were cloned. At least two lpdA mutants increased the fitness of E. coli, and when 7,8-didemethyl-flavin was added to the growth medium, the increase was significant. To the best of our knowledge, an adaptive laboratory evolution experiment running in triplicate as a tool for the identification of mutation hotspots in the genome of microorganisms exposed to metabolic stress challenges is described here for the first time.
Collapse
Affiliation(s)
- Farshad La-Rostami
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (F.L.-R.); (A.S.); (C.A.); (N.W.); (M.C.); (B.I.)
| | - Alexandra Scharf
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (F.L.-R.); (A.S.); (C.A.); (N.W.); (M.C.); (B.I.)
| | - Chenyang Albert
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (F.L.-R.); (A.S.); (C.A.); (N.W.); (M.C.); (B.I.)
| | - Nils Wax
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (F.L.-R.); (A.S.); (C.A.); (N.W.); (M.C.); (B.I.)
| | - Marina Creydt
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (F.L.-R.); (A.S.); (C.A.); (N.W.); (M.C.); (B.I.)
| | - Boris Illarionov
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (F.L.-R.); (A.S.); (C.A.); (N.W.); (M.C.); (B.I.)
| | - Adelbert Bacher
- TUM School of Natural Sciences, Technical University of Munich, Boltzmannstraße 10, 85748 Garching, Germany;
| | - Stefan Weber
- Institute of Physical Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg, Germany;
| | - Markus Fischer
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (F.L.-R.); (A.S.); (C.A.); (N.W.); (M.C.); (B.I.)
| |
Collapse
|
2
|
Guo H, Liu S, Liu X, Zhang L. Lightening flavin by amination for fluorescent sensing. Phys Chem Chem Phys 2024; 26:19554-19563. [PMID: 38979978 DOI: 10.1039/d4cp01525h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Monitoring of reactive oxygen species (ROS), such as O2˙-, etc., in organisms is of great significance, not only for their essential role in biological processes, but their excessive production may also result in many diseases. Flavin (FL) is a fluorophore that naturally exists in flavoenzymes, and its fluorescent emission (FE) becomes negligible when reduced. This enables the application of FL derivatives as fluorescent sensors for ROS. We presented a theoretical investigation to address the impact of amino substitution on the photophysical properties of aminoflavins (AmFLs). Resulting from the interplay of electronic and positional effects, amination at C8 enhances the electronic coupling between the ground state and the first singlet excited state by enlarging the adiabatic energy change of the electronic transitions and the emission transition dipole moments, weakens the vibronic coupling by decreasing the contribution of isoalloxazine to the frontier molecular orbitals, redshifts the absorption band, and enhances the fluorescent emission drastically in 8AmFL. The theoretically estimated fluorescent emission intensity of 8AmFL is ∼40 times that of FL, suggesting its potential application as a fluorescent sensor.
Collapse
Affiliation(s)
- Huimin Guo
- School of Chemistry, Dalian University of Technology, No. 2, Linggong Road, Dalian, 116024, P. R. China.
| | - Siyu Liu
- School of Chemistry, Dalian University of Technology, No. 2, Linggong Road, Dalian, 116024, P. R. China.
| | - Xin Liu
- School of Chemistry, Dalian University of Technology, No. 2, Linggong Road, Dalian, 116024, P. R. China.
| | - Lijun Zhang
- Department of Ophthalmology, The Third People's Hospital of Dalian and Faculty of Medicine, Dalian University of Technology, No. 2, Linggong Road, Dalian, 116024, P. R. China
| |
Collapse
|
3
|
Bracker M, Kubitz MK, Czekelius C, Marian CM, Kleinschmidt M. Computer‐Aided Design of Fluorinated Flavin Derivatives by Modulation of Intersystem Crossing and Fluorescence. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mario Bracker
- Institute of Theoretical and Computational Chemistry Heinrich-Heine-University Düsseldorf D-40204 Düsseldorf Germany
| | - Mira K. Kubitz
- Institute of Organic and Macromolecular Chemistry Heinrich-Heine-University Düsseldorf D-40204 Düsseldorf Germany
| | - Constantin Czekelius
- Institute of Organic and Macromolecular Chemistry Heinrich-Heine-University Düsseldorf D-40204 Düsseldorf Germany
| | - Christel M. Marian
- Institute of Theoretical and Computational Chemistry Heinrich-Heine-University Düsseldorf D-40204 Düsseldorf Germany
| | - Martin Kleinschmidt
- Institute of Theoretical and Computational Chemistry Heinrich-Heine-University Düsseldorf D-40204 Düsseldorf Germany
| |
Collapse
|
4
|
Smolentseva A, Goncharov IM, Yudenko A, Bogorodskiy A, Semenov O, Nazarenko VV, Borshchevskiy V, Fonin AV, Remeeva A, Jaeger KE, Krauss U, Gordeliy V, Gushchin I. Extreme dependence of Chloroflexus aggregans LOV domain thermo- and photostability on the bound flavin species. Photochem Photobiol Sci 2021; 20:1645-1656. [PMID: 34796467 DOI: 10.1007/s43630-021-00138-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/08/2021] [Indexed: 01/10/2023]
Abstract
Light-oxygen-voltage (LOV) domains are common photosensory modules that found many applications in fluorescence microscopy and optogenetics. Here, we show that the Chloroflexus aggregans LOV domain can bind different flavin species (lumichrome, LC; riboflavin, RF; flavin mononucleotide, FMN; flavin adenine dinucleotide, FAD) during heterologous expression and that its physicochemical properties depend strongly on the nature of the bound flavin. We show that whereas the dissociation constants for different chromophores are similar, the melting temperature of the protein reconstituted with single flavin species varies from ~ 60 °C for LC to ~ 81 °C for FMN, and photobleaching half-times vary almost 100-fold. These observations serve as a caution for future studies of LOV domains in non-native conditions yet raise the possibility of fine-tuning various properties of LOV-based fluorescent probes and optogenetic tools by manipulating the chromophore composition.
Collapse
Affiliation(s)
- Anastasia Smolentseva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ivan M Goncharov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anna Yudenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Andrey Bogorodskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Oleg Semenov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Vera V Nazarenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Institute of Biological Information Processing IBI-7: Structural Biochemistry, Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Alexander V Fonin
- Institute of Cytology, Russian Academy of Sciences, 194064, Saint Petersburg, Russia
| | - Alina Remeeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany.,Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Ulrich Krauss
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany.,Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Valentin Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, 38000, Grenoble, France.,Institute of Biological Information Processing IBI-7: Structural Biochemistry, Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| |
Collapse
|
5
|
Affiliation(s)
- P J Hore
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Konstantin L Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, USA
| |
Collapse
|