1
|
Bondar OA, Moustafa GAI, Robertson TBR. Hyperpolarised [2- 13C]-pyruvate by 13C SABRE in an acetone/water mixture. Analyst 2024; 149:5668-5674. [PMID: 39485096 PMCID: PMC11529384 DOI: 10.1039/d4an01005a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/08/2024] [Indexed: 11/03/2024]
Abstract
Signal Amplification By Reversible Exchange (SABRE) can provide strong signal enhancement (SE) to an array of molecules through reversible exchange of parahydrogen (pH2) derived hydrides and a suitable substrate coordinated to a transition metal. Among the substrates that can be used as a probe for hyperpolarised NMR and MRI, pyruvate has gained much attention. SABRE can hyperpolarise pyruvate in a low cost, fast, and reversible fashion that does not involve technologically demanding equipment. Most SABRE polarization studies have been done using methanol-d4 as a solvent, which is not suitable for in vivo application. The main goal of this work was to obtain hyperpolarized pyruvate in a solvent other than methanol which may open the door to further purification steps and enable a method to polarize pyruvate in water in future. This work demonstrates hyperpolarization of the [2-13C]pyruvate as well as [1-13C]pyruvate by SABRE in an acetone/water solvent system at room temperature as an alternative to methanol, which is commonly used. NMR signals are detected using a 1.1 T benchtop NMR spectrometer. In this work we have primarily focused on the study of [2-13C]pyruvate and investigated the effect of catalyst concentration, DMSO presence and water vs. acetone solvent concentration on the signal enhancement. The relaxation times for [2-13C]-pyruvate solutions are reported in the hope of informing the development of future purification methods.
Collapse
Affiliation(s)
- Oksana A Bondar
- School of Chemistry, Highfield Campus, Southampton, SO17 1BJ, UK.
| | - Gamal A I Moustafa
- ATDBio (Now Part of Biotage), Highfield Campus, Southampton, SO17 1BJ, UK
| | | |
Collapse
|
2
|
Iqbal N, Brittin DO, Daluwathumullagamage PJ, Alam MS, Senanayake IM, Gafar AT, Siraj Z, Petrilla A, Pugh M, Tonazzi B, Ragunathan S, Poorman ME, Sacolick L, Theis T, Rosen MS, Chekmenev EY, Goodson BM. Toward Next-Generation Molecular Imaging with a Clinical Low-Field (0.064 T) Point-of-Care MRI Scanner. Anal Chem 2024; 96:10348-10355. [PMID: 38857182 DOI: 10.1021/acs.analchem.4c01299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Low-field (LF) MRI promises soft-tissue imaging without the expensive, immobile magnets of clinical scanners but generally suffers from limited detection sensitivity and contrast. The sensitivity boost provided by hyperpolarization can thus be highly synergistic with LF MRI. Initial efforts to integrate a continuous-bubbling SABRE (signal amplification by reversible exchange) hyperpolarization setup with a portable, point-of-care 64 mT clinical MRI scanner are reported. Results from 1H SABRE MRI of pyrazine and nicotinamide are compared with those of benchtop NMR spectroscopy. Comparison with MRI signals from samples with known H2O/D2O ratios allowed quantification of the SABRE enhancements of imaged samples with various substrate concentrations (down to 3 mM). Respective limits of detection and quantification of 3.3 and 10.1 mM were determined with pyrazine 1H polarization (PH) enhancements of ∼1900 (PH ∼0.04%), supporting ongoing and envisioned efforts to realize SABRE-enabled MRI-based molecular imaging.
Collapse
Affiliation(s)
- Nadiya Iqbal
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Drew O Brittin
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | | | - Md Shahabuddin Alam
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Ishani M Senanayake
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - A Tobi Gafar
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Zahid Siraj
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Anthony Petrilla
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Margaret Pugh
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Brockton Tonazzi
- School of Medicine, Southern Illinois University, Carbondale, Illinois 62901, United States
| | | | | | - Laura Sacolick
- Hyperfine Inc., Guilford, Connecticut 06437, United States
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Matthew S Rosen
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Boyd M Goodson
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| |
Collapse
|
3
|
MacCulloch K, Browning A, Bedoya DOG, McBride SJ, Abdulmojeed MB, Dedesma C, Goodson BM, Rosen MS, Chekmenev EY, Yen YF, TomHon P, Theis T. Facile hyperpolarization chemistry for molecular imaging and metabolic tracking of [1- 13C]pyruvate in vivo. JOURNAL OF MAGNETIC RESONANCE OPEN 2023; 16-17:100129. [PMID: 38090022 PMCID: PMC10715622 DOI: 10.1016/j.jmro.2023.100129] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Hyperpolarization chemistry based on reversible exchange of parahydrogen, also known as Signal Amplification By Reversible Exchange (SABRE), is a particularly simple approach to attain high levels of nuclear spin hyperpolarization, which can enhance NMR and MRI signals by many orders of magnitude. SABRE has received significant attention in the scientific community since its inception because of its relative experimental simplicity and its broad applicability to a wide range of molecules, however in vivo detection of molecular probes hyperpolarized by SABRE has remained elusive. Here we describe a first demonstration of SABRE-hyperpolarized contrast detected in vivo, specifically using hyperpolarized [1-13C]pyruvate. Biocompatible formulations of hyperpolarized [1-13C]pyruvate in, both, methanol-water mixtures, and ethanol-water mixtures followed by dilution with saline and catalyst filtration were prepared and injected into healthy Sprague Dawley and Wistar rats. Effective hyperpolarization-catalyst removal was performed with silica filters without major losses in hyperpolarization. Metabolic conversion of pyruvate to lactate, alanine, and bicarbonate was detected in vivo. Pyruvate-hydrate was also observed as minor byproduct. Measurements were performed on the liver and kidney at 4.7 T via time-resolved spectroscopy and chemical-shift-resolved MRI. In addition, whole-body metabolic measurements were obtained using a cryogen-free 1.5 T MRI system, illustrating the utility of combining lower-cost MRI systems with simple, low-cost hyperpolarization chemistry to develop safe, and scalable molecular imaging.
Collapse
Affiliation(s)
- Keilian MacCulloch
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695,USA
| | - Austin Browning
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695,USA
| | - David O. Guarin Bedoya
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Stephen J. McBride
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695,USA
| | | | - Carlos Dedesma
- Vizma Life Sciences Inc., Chapel Hill, NC, 27514, United States
| | - Boyd M. Goodson
- School of Chemical & Biomolecular Sciences and Materials Technology Center, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Matthew S. Rosen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI 48202, USA
- Russian Academy of Sciences, 119991 Moscow, Russia
| | - Yi-Fen Yen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Patrick TomHon
- Vizma Life Sciences Inc., Chapel Hill, NC, 27514, United States
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695,USA
- Department of Physics, North Carolina State University, Raleigh, NC 27606, USA
- Joint UNC & NC State Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|
4
|
Pham P, Hilty C. R2 Relaxometry of SABRE-Hyperpolarized Substrates at a Low Magnetic Field. Anal Chem 2023; 95:16911-16917. [PMID: 37931028 PMCID: PMC10862376 DOI: 10.1021/acs.analchem.3c02709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023]
Abstract
Nuclear magnetic resonance (NMR) relaxometry at a low magnetic field, in the milli-Tesla range or less, is enabled by signal enhancements through hyperpolarization. The parahydrogen-based method of signal amplification by reversible exchange (SABRE) provides large signals in a dilute liquid for the measurement of R2 relaxation using a single-scan Carr-Purcell-Meiboom-Gill (CPMG) experiment. A comparison of relaxation rates obtained at high and low fields indicates that an otherwise dominant contribution from chemical exchange is excluded in this low-field range. The SABRE process itself is based on exchange between the free and polarization transfer catalyst-bound forms of the substrate. At a high magnetic field of 9.4 T, typical conditions for producing hyperpolarization including 5 mM 5-fluoropyridine-3-carboximidamide as a substrate and 0.5 mM chloro(1,5-cyclooctadiene)[4,5-dimethyl-1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene]iridium(I) as a polarization transfer catalyst precursor resulted in an R2 relaxation rate as high as 3.38 s-1. This relaxation was reduced to 1.19 s-1 at 0.85 mT. A quantitative analysis of relaxation rates and line shapes indicates that milli-Tesla or lower magnetic fields are required to eliminate the exchange contribution. At this magnetic field strength, R2 relaxation rates are indicative primarily of molecular properties. R2 relaxometry may be used for investigating molecular interactions and dynamics. The SABRE hyperpolarization, which provides signal enhancements without requiring a high magnetic field or large instrumentation, is ideally suited to enable these applications.
Collapse
Affiliation(s)
- Pierce Pham
- Chemistry Department, Texas A&M University, College
Station, Texas 77843, United States
| | - Christian Hilty
- Chemistry Department, Texas A&M University, College
Station, Texas 77843, United States
| |
Collapse
|
5
|
Altenhof AR, Kaseman DC, Mason HE, Alvarez MA, Malone MW, Williams RF. On the effects of quadrupolar relaxation in Earth's field NMR spectra. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 355:107540. [PMID: 37722217 DOI: 10.1016/j.jmr.2023.107540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 09/20/2023]
Abstract
There is growing interest in using low-field magnetic resonance experiments for routine chemical characterization. Earth's field NMR is one such technique that can garner structural information and enable sample differentiation with low cost and highly portable designs. The resulting NMR spectra are primarily influenced by J-couplings, resulting in so-called J-coupled spectra (JCS). Many small molecules include atoms with NMR-active nuclei that are quadrupolar either at natural abundance or are often isotopically enriched (e.g.,2H, 6Li, 11B, 14N, 17O, etc.) where the effects of quadrupolar J-couplings and relaxation on JCS of strongly- and weakly-coupled spin systems have not been explored to date. Herein, using a set of seven fluoropyridine samples with unique substitution and J-couplings, we demonstrate that the 14N relaxation rates can induce drastic line-broadening in the JCS. This includes a previously unexplored unique line broadening mechanism enabled by strongly coupled spins at low-field. Numerical simulations are used to model and refine the magnitudes and signs of J-couplings, as well as indirectly determine the 14N relaxation rates in a single 1D experiment that has a higher fidelity than observed in high-field NMR experiments.
Collapse
Affiliation(s)
- Adam R Altenhof
- MPA-Q, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | - Harris E Mason
- C-IIAC, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Marc A Alvarez
- B-TEK, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Michael W Malone
- MPA-Q, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | |
Collapse
|
6
|
Pham P, Hilty C. Biomolecular interactions studied by low-field NMR using SABRE hyperpolarization. Chem Sci 2023; 14:10258-10263. [PMID: 37772094 PMCID: PMC10530938 DOI: 10.1039/d3sc02365f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/31/2023] [Indexed: 09/30/2023] Open
Abstract
We demonstrate that low-field nuclear magnetic resonance provides a means for measuring biomacromolecular interactions without requiring a superconducting, or even a permanent magnet. A small molecule, 5-fluoropyridine-3-carboximidamide, is designed to be a specific ligand for the trypsin protein, while containing a fluorine atom as a nuclear spin hyperpolarizable label. With hyperpolarization by the parahydrogen based signal amplification by the reversible exchange method, fluorine NMR signals are detectable in the measurement field of 0.85 mT of an electromagnet, at a concentration of less than 100 μM. As a weak ligand for the protein, the hyperpolarized molecule can serve as a reporter for measuring the binding of other ligands of interest, illustrated by the determination of the dissociation constant KD of benzamidine from changes in the observed R2 relaxation rates. A signal enhancement of more than 106 compared to Boltzmann polarization at the measurement field indicates that this experiment is not feasible without prepolarization. The extended magnetic field range for the measurement of biomolecular interactions under near physiological conditions, with a protein concentration on the order of 10 μM or less, provides a new option for screening of ligand binding, measurement of protein-protein interactions, and measurement of molecular dynamics.
Collapse
Affiliation(s)
- Pierce Pham
- Department of Chemistry, Texas A&M University 3255 TAMU College Station TX 77843 USA
| | - Christian Hilty
- Department of Chemistry, Texas A&M University 3255 TAMU College Station TX 77843 USA
| |
Collapse
|
7
|
Ellermann F, Sirbu A, Brahms A, Assaf C, Herges R, Hövener JB, Pravdivtsev AN. Spying on parahydrogen-induced polarization transfer using a half-tesla benchtop MRI and hyperpolarized imaging enabled by automation. Nat Commun 2023; 14:4774. [PMID: 37553405 PMCID: PMC10409769 DOI: 10.1038/s41467-023-40539-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/31/2023] [Indexed: 08/10/2023] Open
Abstract
Nuclear spin hyperpolarization is a quantum effect that enhances the nuclear magnetic resonance signal by several orders of magnitude and has enabled real-time metabolic imaging in humans. However, the translation of hyperpolarization technology into routine use in laboratories and medical centers is hampered by the lack of portable, cost-effective polarizers that are not commercially available. Here, we present a portable, automated polarizer based on parahydrogen-induced hyperpolarization (PHIP) at an intermediate magnetic field of 0.5 T (achieved by permanent magnets). With a footprint of 1 m2, we demonstrate semi-continuous, fully automated 1H hyperpolarization of ethyl acetate-d6 and ethyl pyruvate-d6 to P = 14.4% and 16.2%, respectively, and a 13C polarization of 1-13C-ethyl pyruvate-d6 of P = 7%. The duty cycle for preparing a dose is no more than 1 min. To reveal the full potential of 1H hyperpolarization in an inhomogeneous magnetic field, we convert the anti-phase PHIP signals into in-phase peaks, thereby increasing the SNR by a factor of 5. Using a spin-echo approach allowed us to observe the evolution of spin order distribution in real time while conserving the expensive reagents for reaction monitoring, imaging and potential in vivo usage. This compact polarizer will allow us to pursue the translation of hyperpolarized MRI towards in vivo applications further.
Collapse
Affiliation(s)
- Frowin Ellermann
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Aidan Sirbu
- Western University, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Arne Brahms
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto- Hahn Platz 4, 24118, Kiel, Germany
| | - Charbel Assaf
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Rainer Herges
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto- Hahn Platz 4, 24118, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany.
| |
Collapse
|
8
|
Browning A, Macculloch K, TomHon P, Mandzhieva I, Chekmenev EY, Goodson BM, Lehmkuhl S, Theis T. Spin dynamics of [1,2- 13C 2]pyruvate hyperpolarization by parahydrogen in reversible exchange at micro Tesla fields. Phys Chem Chem Phys 2023; 25:16446-16458. [PMID: 37306121 PMCID: PMC10642564 DOI: 10.1039/d3cp00843f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hyperpolarization of 13C-pyruvate via Signal Amplificaton By Reversibble Exchange (SABRE) is an important recent discovery because of both the relative simplicity of hyperpolarization and the central biological relevance of pyruvate as a biomolecular probe for in vitro or in vivo studies. Here, we analyze the [1,2-13C2]pyruvate-SABRE spin system and its field dependence theoretically and experimentally. We provide first-principles analysis of the governing 4-spin dihydride-13C2 Hamiltonian and numerical spin dynamics simulations of the 7-spin dihydride-13C2-CH3 system. The analytical and the numerical results are compared to matching systematic experiments. With these methods we unravel the observed spin state mixing of singlet states and triplet states at microTesla fields and we also analyze the dynamics during transfer from micro-Tesla field to high field for detection to understand the resulting spectra from the [1,2-13C2]pyruvate-SABRE system.
Collapse
Affiliation(s)
- Austin Browning
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, USA.
| | - Keilian Macculloch
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, USA.
| | - Patrick TomHon
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, USA.
| | - Iuliia Mandzhieva
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, USA.
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, USA
| | - Boyd M Goodson
- School of Chemical & Biomolecular Sciences and Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, USA
| | - Sören Lehmkuhl
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, USA.
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, USA.
| |
Collapse
|
9
|
Kaseman DC, Batrice RJ, Williams RF. Detection of natural abundance 13C J-couplings at Earth's magnetic field for spin system differentiation of small organic molecules. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 342:107272. [PMID: 35917767 DOI: 10.1016/j.jmr.2022.107272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy routinely characterizes the unique spin systems of molecules using a combination of chemical shift and J-coupling interactions for the 1H and 13C nuclei. However, at Earth's magnetic field, chemical shifts are unresolvable and the ability to characterize structure relies solely on the J-couplings. Fortuitously, the J-couplings at Earth's field provides the same spin system information as high field, but only requires detection of the 1H nucleus. We report the first identification of the multiple natural abundance 1H-13C spin systems on organic molecules detected at Earth's magnetic field. The results clearly demonstrate the feasibility of Earth's field NMR to characterize small organic molecules without costly enrichment strategies.
Collapse
Affiliation(s)
- Derrick C Kaseman
- Bioenergy and Biome Sciences Group, Los Alamos National Laboratory, Los Alamos, NM 87545, United States; Nuclear Magnetic Resonance Facility, University of California Davis, Davis, CA 95616, United States.
| | - Rami J Batrice
- Chemical Diagnostics and Engineering Group, Los Alamos National Laboratory, Los Alamos, NM 87545, United States
| | - Robert F Williams
- Bioenergy and Biome Sciences Group, Los Alamos National Laboratory, Los Alamos, NM 87545, United States
| |
Collapse
|
10
|
Buntkowsky G, Theiss F, Lins J, Miloslavina YA, Wienands L, Kiryutin A, Yurkovskaya A. Recent advances in the application of parahydrogen in catalysis and biochemistry. RSC Adv 2022; 12:12477-12506. [PMID: 35480380 PMCID: PMC9039419 DOI: 10.1039/d2ra01346k] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/23/2022] [Indexed: 12/15/2022] Open
Abstract
Nuclear Magnetic Resonance (NMR) spectroscopy and Magnetic Resonance Imaging (MRI) are analytical and diagnostic tools that are essential for a very broad field of applications, ranging from chemical analytics, to non-destructive testing of materials and the investigation of molecular dynamics, to in vivo medical diagnostics and drug research. One of the major challenges in their application to many problems is the inherent low sensitivity of magnetic resonance, which results from the small energy-differences of the nuclear spin-states. At thermal equilibrium at room temperature the normalized population difference of the spin-states, called the Boltzmann polarization, is only on the order of 10-5. Parahydrogen induced polarization (PHIP) is an efficient and cost-effective hyperpolarization method, which has widespread applications in Chemistry, Physics, Biochemistry, Biophysics, and Medical Imaging. PHIP creates its signal-enhancements by means of a reversible (SABRE) or irreversible (classic PHIP) chemical reaction between the parahydrogen, a catalyst, and a substrate. Here, we first give a short overview about parahydrogen-based hyperpolarization techniques and then review the current literature on method developments and applications of various flavors of the PHIP experiment.
Collapse
Affiliation(s)
- Gerd Buntkowsky
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Alarich-Weiss-Str. 8 D-64287 Darmstadt Germany
| | - Franziska Theiss
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Alarich-Weiss-Str. 8 D-64287 Darmstadt Germany
| | - Jonas Lins
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Alarich-Weiss-Str. 8 D-64287 Darmstadt Germany
| | - Yuliya A Miloslavina
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Alarich-Weiss-Str. 8 D-64287 Darmstadt Germany
| | - Laura Wienands
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Alarich-Weiss-Str. 8 D-64287 Darmstadt Germany
| | - Alexey Kiryutin
- International Tomography Center, Siberian Branch of the Russian Academy of Science Novosibirsk 630090 Russia
| | - Alexandra Yurkovskaya
- International Tomography Center, Siberian Branch of the Russian Academy of Science Novosibirsk 630090 Russia
| |
Collapse
|
11
|
Bryden N, Antonacci M, Kelley M, Branca RT. An open-source, low-cost NMR spectrometer operating in the mT field regime. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 332:107076. [PMID: 34624719 PMCID: PMC9208334 DOI: 10.1016/j.jmr.2021.107076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
In recent years, low field and ultra-low field NMR spectrometers have gained interest due to their portability, lower cost, and reduced subject-induced magnetic field inhomogeneities. Here, we describe the design of a low-cost multinuclear NMR spectrometer operating in the ultra-low field regime (ULF), which possesses high spectral resolution and enables arbitrary pulse programming. An inexpensive multifunction input/output (I/O) device is used to handle waveform generation and digitization in the kHz operating range. A home-built radio frequency (RF) mixing circuit is used to down-mix the NMR signals, allowing for the slower sampling rates and lower memory requirements needed to enable minute-long acquisitions using a standard Windows PC. The LabVIEW code, along with a bill of materials for all components used in the spectrometer, is included. As proof of concept, 1H relaxation measurements and the simultaneous detection of 1H with gas phase and dissolved 129Xe frequencies using the described low field NMR spectrometer are demonstrated.
Collapse
Affiliation(s)
- Nicholas Bryden
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael Antonacci
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michele Kelley
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rosa T Branca
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
12
|
Vaeggemose M, F. Schulte R, Laustsen C. Comprehensive Literature Review of Hyperpolarized Carbon-13 MRI: The Road to Clinical Application. Metabolites 2021; 11:metabo11040219. [PMID: 33916803 PMCID: PMC8067176 DOI: 10.3390/metabo11040219] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 01/02/2023] Open
Abstract
This review provides a comprehensive assessment of the development of hyperpolarized (HP) carbon-13 metabolic MRI from the early days to the present with a focus on clinical applications. The status and upcoming challenges of translating HP carbon-13 into clinical application are reviewed, along with the complexity, technical advancements, and future directions. The road to clinical application is discussed regarding clinical needs and technological advancements, highlighting the most recent successes of metabolic imaging with hyperpolarized carbon-13 MRI. Given the current state of hyperpolarized carbon-13 MRI, the conclusion of this review is that the workflow for hyperpolarized carbon-13 MRI is the limiting factor.
Collapse
Affiliation(s)
- Michael Vaeggemose
- GE Healthcare, 2605 Brondby, Denmark;
- MR Research Centre, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | | | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
- Correspondence:
| |
Collapse
|