1
|
Zhang B, Zhang Z, Xun K, Asta M, Ding J, Ma E. Minimizing the diffusivity difference between vacancies and interstitials in multi-principal element alloys. Proc Natl Acad Sci U S A 2024; 121:e2314248121. [PMID: 38266045 PMCID: PMC10835040 DOI: 10.1073/pnas.2314248121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024] Open
Abstract
Interstitial atoms usually diffuse much faster than vacancies, which is often the root cause for the ineffective recombination of point defects in metals under irradiation. Here, via ab initio modeling of single-defect diffusion behavior in the equiatomic NiCoCrFe(Pd) alloy, we demonstrate an alloy design strategy that can reduce the diffusivity difference between the two types of point defects. The two diffusivities become almost equal after substituting the NiCoCrFe base alloy with Pd. The underlying mechanism is that Pd, with a much larger atomic size (hence larger compressibility) than the rest of the constituents, not only heightens the activation energy barrier (Ea) for interstitial motion by narrowing the diffusion channels but simultaneously also reduces Ea for vacancies due to less energy penalty required for bond length change between the initial and the saddle states. Our findings have a broad implication that the dynamics of point defects can be manipulated by taking advantage of the atomic size disparity, to facilitate point-defect annihilation that suppresses void formation and swelling, thereby improving radiation tolerance.
Collapse
Affiliation(s)
- Bozhao Zhang
- Center for Alloy Innovation and Design, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an710049, China
| | - Zhen Zhang
- Center for Alloy Innovation and Design, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an710049, China
- Department of Physics, College of Mathematics and Physics, Chengdu University of Technology, Chengdu610059, China
| | - Kaihui Xun
- Center for Alloy Innovation and Design, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an710049, China
| | - Mark Asta
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Department of Materials Science and Engineering, University of California, Berkeley, CA94720
| | - Jun Ding
- Center for Alloy Innovation and Design, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an710049, China
| | - Evan Ma
- Center for Alloy Innovation and Design, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an710049, China
| |
Collapse
|
2
|
Huang L, Cao Y, Wang S, Li G, Dong H, Wu T, Wang N. Conductivity of Multicomponent Alloy under Solid Solution Short-Range Order Cluster Model. ACS OMEGA 2023; 8:11987-11998. [PMID: 37033799 PMCID: PMC10077464 DOI: 10.1021/acsomega.2c07644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
The characteristic of short-range order of multicomponent alloy solid solution promotes the necessity of deeply studying and establishing the microatomic structure behind the alloy components as well as the association with the corresponding macro-physical properties, so as to guide the development of high-performance multicomponent alloys through effective composition theory design. In this research, the popular Inconel 718 nickel-base superalloy with wide application and development is taken as an example. On the one hand, on the basis of the method of "the nearest neighbor cluster plus connecting atom" qualitatively proposed by predecessors to characterize the short-range order atomic arrangement structure of multicomponent alloy solid solution due to the interaction between electrons of atoms introduced into solid solution, Friedel oscillation potential function is generated and associated with the radial density of the corresponding atomic arrangement. On the other hand, according to the construction method of the nearest neighbor cluster in alloy phase that proposes the definition of using the maximum density of atomic radial arrangement to meet the minimum principle of energy stacking, the creatively accurate expression on the spatial structure of short-range order cluster of multicomponent alloy solid solution is achieved in a quantitative manner. Furthermore, with the impact of spatial distribution content of atoms in multicomponent alloy on the external current electron scattering rate (i.e., resistivity), the accurate analysis on the conductivity of multicomponent alloy by using the short-range order cluster model of alloy solid solution is realized through the weighting idea of atomic content of each element to the resistivity (the prediction rate is within 5%).
Collapse
Affiliation(s)
- Liang Huang
- Mechatronic
Engineering, Xi’an Technological
University, Xi’an 710048, China
| | - Yan Cao
- Computer
Science and Engineering, Xi’an Technological
University, Xi’an 710048, China
| | - Shoumin Wang
- Mechatronic
Engineering, Xi’an Technological
University, Xi’an 710048, China
| | - Gaohong Li
- Materials
and Chemical Engineering, Xi’an Technological
University, Xi’an 710021, China
| | - Hao Dong
- Computer
Science and Engineering, Xi’an Technological
University, Xi’an 710048, China
| | - Tao Wu
- Graduate
School, Xi’an Technological University, Xi’an 710021, China
| | - Ning Wang
- Advanced
Manufacturing Research Institute, Xi’an
KunLun Industry (Group) Company with Limited Liability, Xi’an 710043, China
| |
Collapse
|
3
|
Garza RB, Lee J, Nguyen MH, Garmon A, Perez D, Li M, Yang JC, Henkelman G, Saidi WA. Atomistic Mechanisms of Binary Alloy Surface Segregation from Nanoseconds to Seconds Using Accelerated Dynamics. J Chem Theory Comput 2022; 18:4447-4455. [PMID: 35671511 DOI: 10.1021/acs.jctc.2c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although the equilibrium composition of many alloy surfaces is well understood, the rate of transient surface segregation during annealing is not known, despite its crucial effect on alloy corrosion and catalytic reactions occurring on overlapping timescales. In this work, CuNi bimetallic alloys representing (100) surface facets are annealed in vacuum using atomistic simulations to observe the effect of vacancy diffusion on surface separation. We employ multi-timescale methods to sample the early transient, intermediate, and equilibrium states of slab surfaces during the separation process, including standard MD as well as three methods to perform atomistic, long-time dynamics: parallel trajectory splicing (ParSplice), adaptive kinetic Monte Carlo (AKMC), and kinetic Monte Carlo (KMC). From nanosecond (ns) to second timescales, our multiscale computational methodology can observe rare stochastic events not typically seen with standard MD, closing the gap between computational and experimental timescales for surface segregation. Rapid diffusion of a vacancy to the slab is resolved by all four methods in tens of nanoseconds. Stochastic re-entry of vacancies into the subsurface, however, is only seen on the microsecond timescale in the two KMC methods. Kinetic vacancy trapping on the surface and its effect on the segregation rate are discussed. The equilibrium composition profile of CuNi after segregation during annealing is estimated to occur on a timescale of seconds as determined by KMC, a result directly comparable to nanoscale experiments.
Collapse
Affiliation(s)
- Richard B Garza
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jiyoung Lee
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States.,Oden Institute for Computational Engineering & Sciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Mai H Nguyen
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Andrew Garmon
- Theoretical Division T-1, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.,Department of Physics & Astronomy, Clemson University, Clemson, South Carolina 29631, United States
| | - Danny Perez
- Theoretical Division T-1, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Meng Li
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Judith C Yang
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Graeme Henkelman
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States.,Oden Institute for Computational Engineering & Sciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Wissam A Saidi
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
4
|
Pineda M, Stamatakis M. Kinetic Monte Carlo simulations for heterogeneous catalysis: Fundamentals, current status, and challenges. J Chem Phys 2022; 156:120902. [DOI: 10.1063/5.0083251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Kinetic Monte Carlo (KMC) simulations in combination with first-principles (1p)-based calculations are rapidly becoming the gold-standard computational framework for bridging the gap between the wide range of length scales and time scales over which heterogeneous catalysis unfolds. 1p-KMC simulations provide accurate insights into reactions over surfaces, a vital step toward the rational design of novel catalysts. In this Perspective, we briefly outline basic principles, computational challenges, successful applications, as well as future directions and opportunities of this promising and ever more popular kinetic modeling approach.
Collapse
Affiliation(s)
- M. Pineda
- Thomas Young Centre and Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, United Kingdom
| | - M. Stamatakis
- Thomas Young Centre and Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, United Kingdom
| |
Collapse
|
5
|
Zhang Y, Osetsky YN, Weber WJ. Tunable Chemical Disorder in Concentrated Alloys: Defect Physics and Radiation Performance. Chem Rev 2021; 122:789-829. [PMID: 34694124 DOI: 10.1021/acs.chemrev.1c00387] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of advanced structural alloys with performance meeting the requirements of extreme environments in nuclear reactors has been long pursued. In the long history of alloy development, the search for metallic alloys with improved radiation tolerance or increased structural strength has relied on either incorporating alloying elements at low concentrations to synthesize so-called dilute alloys or incorporating nanoscale features to mitigate defects. In contrast to traditional approaches, recent success in synthesizing multicomponent concentrated solid-solution alloys (CSAs), including medium-entropy and high-entropy alloys, has vastly expanded the compositional space for new alloy discovery. Their wide variety of elemental diversity enables tunable chemical disorder and sets CSAs apart from traditional dilute alloys. The tunable electronic structure critically lowers the effectiveness of energy dissipation via the electronic subsystem. The tunable chemical complexity also modifies the scattering mechanisms in the atomic subsystem that control energy transport through phonons. The level of chemical disorder depends substantively on the specific alloying elements, rather than the number of alloying elements, as the disorder does not monotonically increase with a higher number of alloying elements. To go beyond our knowledge based on conventional alloys and take advantage of property enhancement by tuning chemical disorder, this review highlights synergistic effects involving valence electrons and atomic-level and nanoscale inhomogeneity in CSAs composed of multiple transition metals. Understanding of the energy dissipation pathways, deformation tolerance, and structural stability of CSAs can proceed by exploiting the equilibrium and non-equilibrium defect processes at the electronic and atomic levels, with or without microstructural inhomogeneities at multiple length scales. Knowledge of tunable chemical disorder in CSAs may advance the understanding of the substantial modifications in element-specific alloy properties that effectively mitigate radiation damage and control a material's response in extreme environments, as well as overcome strength-ductility trade-offs and provide overarching design strategies for structural alloys.
Collapse
Affiliation(s)
- Yanwen Zhang
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.,Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Yuri N Osetsky
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - William J Weber
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|