1
|
Akerman MS, Sagi R, Asscher M. Inverse Volcano: A New Molecule-Surface Interaction Phenomenon. PHYSICAL REVIEW LETTERS 2023; 130:086203. [PMID: 36898118 DOI: 10.1103/physrevlett.130.086203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Explosive desorption of guest molecules embedded in amorphous solid water upon its crystallization is known as the "molecular volcano." Here, we describe an abrupt ejection of NH_{3} guest molecules from various molecular host films toward a Ru(0001) substrate upon heating, utilizing both temperature programmed contact potential difference and temperature programmed desorption measurements. NH_{3} molecules abruptly migrate toward the substrate due to either crystallization or desorption of the host molecules, following an "inverse volcano" process considered a highly probable phenomenon for dipolar guest molecules that strongly interact with the substrate.
Collapse
Affiliation(s)
- Michelle S Akerman
- Institute of Chemistry, Edmund J. Safra Campus, Givat-Ram The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Roey Sagi
- Institute of Chemistry, Edmund J. Safra Campus, Givat-Ram The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Micha Asscher
- Institute of Chemistry, Edmund J. Safra Campus, Givat-Ram The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
2
|
Akerman M, Iny H, Sagi R, Asscher M. Chemical Reactivity of Strongly Interacting, Hydrogen-Bond-Forming Molecules Following 193 nm Photon Irradiation: Methanol in Amorphous Solid Water at Low Temperatures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2838-2849. [PMID: 36763094 PMCID: PMC9948533 DOI: 10.1021/acs.langmuir.2c03441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Mixtures of methanol and amorphous solid water (ASW) ices are observed in the interstellar medium (ISM), where they are subject to irradiation by UV photons and bombardment by charged particles. The charged particles, if at high enough density, induce a local electric field in the ice film that potentially affects the photochemistry of these ices. When CD3OD@ASW ices grown at 38 K on a Ru(0001) substrate are irradiated by 193 nm (6.4 eV) photons, products such as HD, D2, CO, and CO2 are formed in large abundances relative to the initial amount of CD3OD. Other molecules such as D2O, CD4, acetaldehyde, and ethanol and/or dimethyl ether are also observed, but in smaller relative abundances. The reactivity cross sections range from (2.6 ± 0.3) × 10-21 to (3.8 ± 0.3) × 10-25 cm2/photon. The main products are formed through two competing mechanisms: direct photodissociation of methanol and water and dissociative electron attachment (DEA) by photoelectrons ejected from the Ru(0001) substrate. An electric field of 2 × 108 V/m generated within the ASW film during Ne+ ions bombardment is apparently not strong enough to affect the relative abundances (selectivity) of the photochemical products observed in this study.
Collapse
|
3
|
Akerman MS, Sagi R, Iny H, Asscher M. Distribution of Weakly Interacting Atoms and Molecules in Low-Temperature Amorphous Solid Water. J Phys Chem A 2022; 126:8037-8048. [PMID: 36260925 DOI: 10.1021/acs.jpca.2c06137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the distribution and mixing of atoms and molecules in amorphous solid water (ASW) at low temperatures is relevant to the exploration of the astrochemical environment in the interstellar medium (ISM) that leads to the formation of new complex molecules. In this study, a combination of temperature programmed desorption (ΔP-TPD) experiments and Ne+ ion sputtering is used to determine the extent of mixing and distribution of guest atoms and molecules within thin ASW films deposited at 35 K on a Ru(0001) substrate, prior to sputtering. The mixing of krypton atoms and methyl chloride molecules within thin ASW films is directed by the physical properties of the respective species and the nature of their interaction with the host water molecules. While the Kr-H2O interaction may be described as a weak van der Waals attraction, the CD3Cl-H2O interaction can be characterized as weakly hydrophobic in nature. This leads to differences in the level of homogeneity in mixing and distribution of the guest species in the ASW film. Both krypton atoms and methyl chloride molecules reveal a propensity to migrate toward the ASW-vacuum interface. The krypton atoms migrate through both diffusion and displacement by incoming H2O molecules, while the methyl chloride molecules tend to move toward the vacuum interface primarily via displacement. This behavior results in more homogeneous mixing of Kr in ASW at 35 K compared to the dipole moment containing molecule CD3Cl. As a general outcome of our study, it is observed that mixing in ASW at low temperatures is more homogeneous when the guest atom/molecule is inert and does not possess a constant dipole moment.
Collapse
Affiliation(s)
- Michelle Sykes Akerman
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmund J. Safra Campus Givat Ram, Jerusalem 91904, Israel
| | - Roey Sagi
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmund J. Safra Campus Givat Ram, Jerusalem 91904, Israel
| | - Hiley Iny
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmund J. Safra Campus Givat Ram, Jerusalem 91904, Israel
| | - Micha Asscher
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmund J. Safra Campus Givat Ram, Jerusalem 91904, Israel
| |
Collapse
|
4
|
Hashemi SR, McCoustra MRS, Fraser HJ, Nyman G. A theoretical study on spontaneous dipole orientation in ice structures. Phys Chem Chem Phys 2022; 24:12922-12925. [PMID: 35593329 DOI: 10.1039/d2cp00360k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spontaneous dipole orientation is studied for a set of simulated porous ASW ice films on a substrate held at temperatures ranging from 10 K to 140 K. It is found that the water dipoles in the films obtained at the lower temperatures are oriented such that a negative electric field with a magnitude of 108-109 V m-1 is obtained. The magnitude of the field increases approximately linearly with height above the substrate, akin to experimental observations, although the magnitude of our field increases faster. A strong temperature dependence of the surface potential resulting from the spontelectric field is found, where the surface potential decreases when the substrate temperature increases. The surface potential finally becomes close to zero for temperatures around and above 110 K.
Collapse
Affiliation(s)
- S Rasoul Hashemi
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg, Sweden.
| | | | - Helen J Fraser
- School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - Gunnar Nyman
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg, Sweden.
| |
Collapse
|
5
|
Field D, Cassidy A. Comment on "Spontaneous Polarization of Cryo-Deposited Films for Five Normal Saturated Monohydroxy Alcohols, C nH 2n+1OH, n = 1-5". J Phys Chem B 2021; 125:7568-7569. [PMID: 34185522 DOI: 10.1021/acs.jpcb.1c02361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David Field
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, Aarhus 8000 C, Denmark
| | - Andrew Cassidy
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, Aarhus 8000 C, Denmark
| |
Collapse
|
6
|
Tourlakis GM, Adamopoulos SAT, Gavra IK, Milpanis AA, Tsagri LF, Pachygianni ASG, Chatzikokolis SS, Tsekouras AA. Sign flipping of spontaneous polarization in vapour-deposited films of small polar organic molecules. Phys Chem Chem Phys 2021; 23:14352-14362. [PMID: 34169950 DOI: 10.1039/d1cp01584b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Films of polar molecules vapour-deposited on sufficiently cold substrates are not only amorphous, but also exhibit charge polarization across their thickness. This is an effect known for 50 years, but it is very poorly understood and no mechanism exists in the literature that can explain and predict it. We investigated this bulk effect for 18 small organic molecules as a function of substrate temperature (30-130 K). We found that, as a rule, alcohol films have the negative end on the vacuum side at all temperatures. Alkyl acetates and toluene showed positive voltages which reached a maximum around the middle of the temperature range investigated. Tetrahydrofuran showed positive voltages which dropped with increasing deposition temperature. Diethyl ether, acetone, propanal, and butanal showed positive film voltages at low temperatures, negative at intermediate temperatures and again positive voltages at higher temperatures. In all cases, film voltages were monitored during heating leading to film evaporation. Film voltages were irreversibly eliminated before film elimination, but voltage profiles during temperature ramps differed vastly depending on compound and deposition temperature. In general, there was a gradual voltage reduction, but propanal, butanal, and diethyl ether showed a change in voltage sign during temperature ramp in films deposited at low temperatures. All these data expand substantially the experimental information regarding spontaneous polarization in vapour-deposited films, but still require complementary measurements as well as numerical simulations for a detailed explanation of the phenomenon.
Collapse
Affiliation(s)
- Georgios M Tourlakis
- Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784, Greece.
| | - Sotirios Alexandros T Adamopoulos
- Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784, Greece.
| | - Irini K Gavra
- Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784, Greece.
| | - Alexandros A Milpanis
- Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784, Greece.
| | - Liveria F Tsagri
- Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784, Greece.
| | - Aikaterini Sofia G Pachygianni
- Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784, Greece.
| | - Stylianos S Chatzikokolis
- Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784, Greece.
| | - Athanassios A Tsekouras
- Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784, Greece.
| |
Collapse
|