1
|
Wang L, Yao Q, Guo X, Wang B, Si J, Wang X, Jing S, Yan M, Shi Y, Song G, Shen X, Guan J, Zhao Y, Zhu C. Targeted delivery of CEBPA-saRNA for the treatment of pancreatic ductal adenocarcinoma by transferrin receptor aptamer decorated tetrahedral framework nucleic acid. J Nanobiotechnology 2024; 22:392. [PMID: 38965606 PMCID: PMC11223357 DOI: 10.1186/s12951-024-02665-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
Pancreatic cancer, predominantly pancreatic ductal adenocarcinoma (PDAC), remains a highly lethal malignancy with limited therapeutic options and a dismal prognosis. By targeting the underlying molecular abnormalities responsible for PDAC development and progression, gene therapy offers a promising strategy to overcome the challenges posed by conventional radiotherapy and chemotherapy. This study sought to explore the therapeutic potential of small activating RNAs (saRNAs) specifically targeting the CCAAT/enhancer-binding protein alpha (CEBPA) gene in PDAC. To overcome the challenges associated with saRNA delivery, tetrahedral framework nucleic acids (tFNAs) were rationally engineered as nanocarriers. These tFNAs were further functionalized with a truncated transferrin receptor aptamer (tTR14) to enhance targeting specificity for PDAC cells. The constructed tFNA-based saRNA formulation demonstrated exceptional stability, efficient saRNA release ability, substantial cellular uptake, biocompatibility, and nontoxicity. In vitro experiments revealed successful intracellular delivery of CEBPA-saRNA utilizing tTR14-decorated tFNA nanocarriers, resulting in significant activation of tumor suppressor genes, namely, CEBPA and its downstream effector P21, leading to notable inhibition of PDAC cell proliferation. Moreover, in a mouse model of PDAC, the tTR14-decorated tFNA-mediated delivery of CEBPA-saRNA effectively upregulated the expression of the CEBPA and P21 genes, consequently suppressing tumor growth. These compelling findings highlight the potential utility of saRNA delivered via a designed tFNA nanocarrier to induce the activation of tumor suppressor genes as an innovative therapeutic approach for PDAC.
Collapse
Affiliation(s)
- Li Wang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
- Joint Laboratory of Biomaterials and Translational Medicine, Puheng Technology, Suzhou, China
| | - Qunyan Yao
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Geriatric Medical Center, Shanghai, China
| | - Xuerui Guo
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Bingmei Wang
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jingyi Si
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xingye Wang
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Shisong Jing
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ming Yan
- The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Yan Shi
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Guangqi Song
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Joint Laboratory of Biomaterials and Translational Medicine, Puheng Technology, Suzhou, China
| | - Xizhong Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiyu Guan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Yicheng Zhao
- China-Japan Union Hospital of Jilin University, Changchun, China.
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China.
- Joint Laboratory of Biomaterials and Translational Medicine, Puheng Technology, Suzhou, China.
| | - Changfeng Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Fan Q, Li Z, Yin J, Xie M, Cui M, Fan C, Wang L, Chao J. Inhalable pH-responsive DNA tetrahedron nanoplatform for boosting anti-tumor immune responses against metastatic lung cancer. Biomaterials 2023; 301:122283. [PMID: 37639977 DOI: 10.1016/j.biomaterials.2023.122283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
Despite advancements in the treatment of pulmonary cancer, the existence of mucosal barriers in lung still hampered the penetration and diffusion of therapeutic agents and greatly limited the therapeutic benefits. In this work, we reported a novel inhalable pH-responsive tetrahedral DNA nanomachines with simultaneous delivery of immunomodulatory CpG oligonucleotide and PD-L1-targeting antagonistic DNA aptamer (CP@TDN) for efficient treatment of pulmonary metastatic cancer. By precisely controlling the ratios of CpG and PD-L1 aptamer, the obtained CP@TDN could specifically release PD-L1 aptamer to block PD-1/PD-L1 immune checkpoint axis in acidic tumor microenvironment, followed by endocytosis by antigen-presenting cells to generate anti-tumor immune activation and secretion of anti-tumor cytokines. Moreover, inhalation delivery of CP@TDN showed highly-efficient lung deposition with greatly enhanced intratumoral accumulation, ascribing to the DNA tetrahedron-mediated penetration of pulmonary mucosa. Resultantly, CP@TDN could significantly inhibit the growth of metastatic orthotopic lung tumors via the induction of robust antitumor responses. Therefore, our work presents an attractive approach by virtue of biocompatible DNA tetrahedron as the inhalation delivery system for effective treatment of metastatic lung cancer.
Collapse
Affiliation(s)
- Qin Fan
- State Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing 210000, China
| | - Zhihao Li
- State Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing 210000, China
| | - Jue Yin
- State Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing 210000, China
| | - Mo Xie
- State Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing 210000, China
| | - Meirong Cui
- State Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing 210000, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lianhui Wang
- State Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing 210000, China
| | - Jie Chao
- State Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing 210000, China; Smart Health Big Data Analysis and Location Services Engineering Research Center of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts & Telecommunications, Nanjing 210000, China.
| |
Collapse
|
3
|
Song G, Dong H, Ma D, Wang H, Ren X, Qu Y, Wu H, Zhu J, Song W, Meng Y, Wang L, Liu T, Shen X, Zhao Y, Zhu C. Tetrahedral Framework Nucleic Acid Delivered RNA Therapeutics Significantly Attenuate Pancreatic Cancer Progression via Inhibition of CTR1-Dependent Copper Absorption. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46334-46342. [PMID: 34549583 DOI: 10.1021/acsami.1c13091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Copper is vital for various life processes, whereas severely toxic at excess level. Intracellular copper homeostasis is strictly controlled by a set of transporters and chaperones encoded by the copper homeostasis genes. Increasing evidence has shown that copper is usually overloaded in multiple malignancies, including pancreatic cancer, which has an extremely poor prognosis. Recently, silencing the SLC31A1 gene, which encodes a major transmembrane copper transporter (CTR1), has been demonstrated to be an effective means for reducing the malignant degree of pancreatic cancer by downregulating the cellular copper levels. Herein, we utilized tetrahedral framework nucleic acids (tFNAs) as vehicles to overcome the biological barriers for delivering small molecular RNAs and efficiently transferred two kinds of CTR1 mRNA-targeted RNA therapeutics, siCTR1 or miR-124, into PANC-1 cells. Both therapeutic tFNAs, termed t-siCTR1 and t-miR-124, prevented copper intake more effective than the free RNA therapeutics via efficiently suppressing the expression of CTR1, thereby significantly attenuating the progression of PANC-1 cells. In this study, therapeutic tFNAs are constructed to target metal ion transporters for the first time, which may provide an effective strategy for future treatment of other metal metabolism disorders.
Collapse
Affiliation(s)
- Guangqi Song
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| | - Haisi Dong
- Clinical Medical College, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Danhui Ma
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| | - Heming Wang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| | - Xinran Ren
- Clinical Medical College, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
- School of Pharmaceutical Science, Jilin University, Changchun 130021, China
| | - Yishen Qu
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Hao Wu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| | - Jimin Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| | - Wu Song
- Clinical Medical College, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Ying Meng
- Clinical Medical College, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Li Wang
- Clinical Medical College, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Taotao Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| | - Xizhong Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| | - Yicheng Zhao
- Clinical Medical College, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Changfeng Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| |
Collapse
|