Unexpected steric hindrance failure in the gas phase F
- + (CH
3)
3CI S
N2 reaction.
Nat Commun 2022;
13:4427. [PMID:
35907925 PMCID:
PMC9338938 DOI:
10.1038/s41467-022-32191-6]
[Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Base-induced elimination (E2) and bimolecular nucleophilic substitution (SN2) reactions are of significant importance in physical organic chemistry. The textbook example of the retardation of SN2 reactivity by bulky alkyl substitution is widely accepted based on the static analysis of molecular structure and steric environment. However, the direct dynamical evidence of the steric hindrance of SN2 from experiment or theory remains rare. Here, we report an unprecedented full-dimensional (39-dimensional) machine learning-based potential energy surface for the 15-atom F− + (CH3)3CI reaction, facilitating the reliable and efficient reaction dynamics simulations that can reproduce well the experimental outcomes and examine associated atomic-molecular level mechanisms. Moreover, we found surprisingly high “intrinsic” reactivity of SN2 when the E2 pathway is completely blocked, indicating the reaction that intends to proceed via E2 transits to SN2 instead, due to a shared pre-reaction minimum. This finding indicates that the competing factor of E2 but not the steric hindrance determines the small reactivity of SN2 for the F− + (CH3)3CI reaction. Our study provides new insight into the dynamical origin that determines the intrinsic reactivity in gas-phase organic chemistry.
Base-induced elimination (E2) and bimolecular nucleophilic substitution (SN2) are of significant importance in physical organic chemistry. Here, the authors show that the competing factor of E2 as opposed to steric hindrance determines the low reactivity of SN2 in the F− + (CH3)3CI reaction.
Collapse