1
|
Hazra S, Naskar K, Adhikari S, Varandas AJC. Ortho-Para Conversion for H + + H 2 Collision in Low Temperature: A Fully Close-Coupled Time-Dependent Wave Packet Study. J Phys Chem A 2024; 128:8833-8844. [PMID: 39377641 DOI: 10.1021/acs.jpca.4c02243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The collision-induced rate coefficients of ortho-para conversion for the H+ + H2 reaction provide accurate information to probe the lifetime of cold environments in interstellar media. Rotationally resolved reaction probabilities are calculated at the low collision energy regime (0 < Ecol ≤ 0.3 eV) by employing the coupled three-dimensional (3D) time-dependent wave packet (TDWP) formalism in hyperspherical coordinates on a recently constructed ab initio ground adiabatic potential energy surface of H3+ [J. Chem. Phys. 2014, 141, 204306] for the process H+ + H2 (v = 0, j = 0-5) → H+ + H2 (v' = 0, j'). Cross-sections are then computed from the converged reaction probabilities as a function of total angular momentum (J) over the same energy regime and subsequently employed to obtain the rate constants for the ortho-to-para (O-P) and para-to-ortho (P-O) conversions and their ratio. The ratio of ortho-para conversion shows (a) appropriate convergence with the inclusion of a higher number of initial rotational states as well as a reasonable agreement with the results from a quantum statistical method and (b) a peak at lower temperature that could be due to the available collision energy for transitions involving lower rotational states (j = 0 → j' = 1).
Collapse
Affiliation(s)
- Saikat Hazra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Koushik Naskar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Satrajit Adhikari
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - António J C Varandas
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, P. R. China
- Departamento de Fisica, Universidade Federal do Espirito Santo, 29075-910 Vitória, Brazil
- Coimbra Chemistry Centre and Chemistry Department, University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
2
|
Gong Q, Man Q, Zhao J, Li Y, Dou M, Wang Q, Wu YC, Guo GP. Simulating chemical reaction dynamics on quantum computer. J Chem Phys 2024; 160:124103. [PMID: 38526102 DOI: 10.1063/5.0192036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/06/2024] [Indexed: 03/26/2024] Open
Abstract
The electronic energies of molecules have been successfully evaluated on quantum computers. However, more attention is paid to the dynamics simulation of molecules in practical applications. Based on the variational quantum eigensolver (VQE) algorithm, Fedorov et al. proposed a correlated sampling (CS) method and demonstrated the vibrational dynamics of H2 molecules [J. Chem. Phys. 154, 164103 (2021)]. In this study, we have developed a quantum approach by extending the CS method based on the VQE algorithm (labeled eCS-VQE) for simulating chemical reaction dynamics. First, the CS method is extended to the three-dimensional cases for calculation of first-order energy gradients, and then, it is further generalized to calculate the second-order gradients of energies. By calculating atomic forces and vibrational frequencies for H2, LiH, H+ + H2, and Cl- + CH3Cl systems, we have seen that the approach has achieved the CCSD level of accuracy. Thus, we have simulated dynamics processes for two typical chemical reactions, hydrogen exchange and chlorine substitution, and obtained high-precision reaction dynamics trajectories consistent with the classical methods. Our eCS-VQE approach, as measurement expectations and ground-state wave functions can be reused, is less demanding in quantum computing resources and is, therefore, a feasible means for the dynamics simulation of chemical reactions on the current noisy intermediate-scale quantum-era quantum devices.
Collapse
Affiliation(s)
- Qiankun Gong
- Origin Quantum Computing Company Limited, Hefei, Anhui 230026, China
| | - Qingmin Man
- Origin Quantum Computing Company Limited, Hefei, Anhui 230026, China
| | - Jianyu Zhao
- Origin Quantum Computing Company Limited, Hefei, Anhui 230026, China
| | - Ye Li
- Origin Quantum Computing Company Limited, Hefei, Anhui 230026, China
| | - Menghan Dou
- Origin Quantum Computing Company Limited, Hefei, Anhui 230026, China
| | - Qingchun Wang
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui 230088, China
| | - Yu-Chun Wu
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui 230088, China
- CAS Key Laboratory of Quantum Information, School of Physics, University of Science and Technology of China, Hefei 230026, China
| | - Guo-Ping Guo
- Origin Quantum Computing Company Limited, Hefei, Anhui 230026, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui 230088, China
- CAS Key Laboratory of Quantum Information, School of Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Le Bourlot J, Roueff E, Le Petit F, Kehrein F, Oetjens A, Kreckel H. Understanding the temperatures of H 3+ and H 2 in diffuse interstellar sightlines. Mol Phys 2023. [DOI: 10.1080/00268976.2023.2182612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Jacques Le Bourlot
- LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, Meudon, France
- Université Paris Cité, Paris, France
| | - Evelyne Roueff
- LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, Meudon, France
| | - Franck Le Petit
- LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, Meudon, France
| | | | | | | |
Collapse
|
4
|
Konings M, Desrousseaux B, Lique F, Loreau J. Benchmarking an improved statistical adiabatic channel model for competing inelastic and reactive processes. J Chem Phys 2021; 155:104302. [PMID: 34525820 DOI: 10.1063/5.0062388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Inelastic collisions and elementary chemical reactions proceeding through the formation and subsequent decay of an intermediate collision complex, with an associated deep well on the potential energy surface, pose a challenge for accurate fully quantum mechanical approaches, such as the close-coupling method. In this study, we report on the theoretical prediction of temperature-dependent state-to-state rate coefficients for these complex-mode processes, using a statistical quantum method. This statistical adiabatic channel model is benchmarked by a direct comparison using accurate rate coefficients from the literature for a number of systems (H2 + H+, HD + H+, SH+ + H, and CH+ + H) of interest in astrochemistry and astrophysics. For all of the systems considered, an error of less than factor 2 was found, at least for the dominant transitions and at low temperatures, which is sufficiently accurate for applications in the above mentioned disciplines.
Collapse
Affiliation(s)
- Maarten Konings
- KU Leuven, Division of Quantum Chemistry and Physical Chemistry, Department of Chemistry, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Benjamin Desrousseaux
- Université de Rennes 1, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France
| | - François Lique
- Université de Rennes 1, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France
| | - Jérôme Loreau
- KU Leuven, Division of Quantum Chemistry and Physical Chemistry, Department of Chemistry, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
5
|
Guo H, Worth G, Domcke W. Quantum dynamics with ab initio potentials. J Chem Phys 2021; 155:080401. [PMID: 34470339 DOI: 10.1063/5.0066234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Graham Worth
- Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - Wolfgang Domcke
- Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany
| |
Collapse
|