1
|
Zhang S, Makoś MZ, Jadrich RB, Kraka E, Barros K, Nebgen BT, Tretiak S, Isayev O, Lubbers N, Messerly RA, Smith JS. Exploring the frontiers of condensed-phase chemistry with a general reactive machine learning potential. Nat Chem 2024; 16:727-734. [PMID: 38454071 PMCID: PMC11087274 DOI: 10.1038/s41557-023-01427-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 12/12/2023] [Indexed: 03/09/2024]
Abstract
Atomistic simulation has a broad range of applications from drug design to materials discovery. Machine learning interatomic potentials (MLIPs) have become an efficient alternative to computationally expensive ab initio simulations. For this reason, chemistry and materials science would greatly benefit from a general reactive MLIP, that is, an MLIP that is applicable to a broad range of reactive chemistry without the need for refitting. Here we develop a general reactive MLIP (ANI-1xnr) through automated sampling of condensed-phase reactions. ANI-1xnr is then applied to study five distinct systems: carbon solid-phase nucleation, graphene ring formation from acetylene, biofuel additives, combustion of methane and the spontaneous formation of glycine from early earth small molecules. In all studies, ANI-1xnr closely matches experiment (when available) and/or previous studies using traditional model chemistry methods. As such, ANI-1xnr proves to be a highly general reactive MLIP for C, H, N and O elements in the condensed phase, enabling high-throughput in silico reactive chemistry experimentation.
Collapse
Affiliation(s)
- Shuhao Zhang
- Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA, USA
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Małgorzata Z Makoś
- Computational and Theoretical Chemistry Group, Department of Chemistry, Southern Methodist University, Dallas, TX, USA
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Ryan B Jadrich
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group, Department of Chemistry, Southern Methodist University, Dallas, TX, USA
| | - Kipton Barros
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Benjamin T Nebgen
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Sergei Tretiak
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Olexandr Isayev
- Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Nicholas Lubbers
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
| | - Richard A Messerly
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
| | - Justin S Smith
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
- NVIDIA Corp., Santa Clara, CA, USA.
| |
Collapse
|
2
|
Maerzke KA, Yoon TJ, Jadrich RB, Leiding JA, Currier RP. First-Principles Simulations of CuCl in High-Temperature Water Vapor. J Phys Chem B 2021; 125:4794-4807. [PMID: 33938730 DOI: 10.1021/acs.jpcb.1c00083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Experimental data suggest that the solubility of copper in high-temperature water vapor is controlled by the formation of hydrated clusters of the form CuCl(H2O)n, where the average number of water molecules in the cluster generally increases with increasing density [Migdisov, A. A.; et al. Geochim. Cosmochim. Acta 2014, 129, 33-53]. However, the precise nature of these clusters is difficult to probe experimentally. Moreover, there are some discrepancies between experimental estimates of average cluster size and prior simulation work [Mei, Y. Geofluids 2018, 2018, 4279124]. We have performed first-principles Monte Carlo (MC) and molecular dynamics (MD) simulations to explore these clusters in finer detail. We find that molecular dynamics is not the most appropriate technique for studying aggregation in vapor phases, even at relatively high temperatures. Specifically, our MD simulations exhibit substantial problems in adequately sampling the equilibrium cluster size distribution. In contrast, MC simulations with specialized cluster moves are able to accurately sample the phase space of hydrogen-bonding vapors. At all densities, we find a stable, slightly distorted linear H2O-Cu-Cl structure, which is in agreement with the earlier simulations, surrounded by a variable number of water molecules. The surrounding water molecules do not form a well-defined second solvation shell but rather a loose network of hydrogen-bonded water with molecular CuCl on the outside edge of the water cluster. We also find a broad distribution of hydration numbers, especially at higher densities. In contrast to previous simulation work but in agreement with experimental data, we find that the average hydration number substantially increases with increasing density. Moreover, the value of the hydration number depends on the choice of cluster definition.
Collapse
Affiliation(s)
- Katie A Maerzke
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Tae Jun Yoon
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Ryan B Jadrich
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.,Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Jeffery A Leiding
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Robert P Currier
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|