1
|
Lemke Y, Kussmann J, Ochsenfeld C. Highly Accurate and Robust Constraint-Based Orbital-Optimized Core Excitations. J Phys Chem A 2024; 128:9804-9818. [PMID: 39495940 PMCID: PMC11571214 DOI: 10.1021/acs.jpca.4c04139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 11/06/2024]
Abstract
We adapt our recently developed constraint-based orbital-optimized excited-state method (COOX) for the computation of core excitations. COOX is a constrained density functional theory (cDFT) approach based on excitation amplitudes from linear-response time-dependent DFT (LR-TDDFT), and has been shown to provide accurate excitation energies and excited-state properties for valence excitations within a spin-restricted formalism. To extend COOX to core-excited states, we introduce a spin-unrestricted variant which allows us to obtain orbital-optimized core excitations with a single constraint. Using a triplet purification scheme in combination with the constrained unrestricted Hartree-Fock formalism, scalar-relativistic zero-order regular approximation corrections, and a semiempirical treatment of spin-orbit coupling, COOX is shown to produce highly accurate results for K- and L-edge excitations of second- and third-period atoms with subelectronvolt errors despite being based on LR-TDDFT, for which core excitations pose a well-known challenge. L- and M-edge excitations of heavier atoms up to uranium are also computationally feasible and numerically stable, but may require more advanced treatment of relativistic effects. Furthermore, COOX is shown to perform on par with or better than the popular ΔSCF approach while exhibiting more robust convergence, highlighting it as a promising tool for inexpensive and accurate simulations of X-ray absorption spectra.
Collapse
Affiliation(s)
- Yannick Lemke
- Chair
of Theoretical Chemistry, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Munich D-81377, Germany
| | - Jörg Kussmann
- Chair
of Theoretical Chemistry, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Munich D-81377, Germany
| | - Christian Ochsenfeld
- Chair
of Theoretical Chemistry, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Munich D-81377, Germany
- Max-Planck-Institute
for Solid State Research, Heisenbergstr. 1, Stuttgart D-70569, Germany
| |
Collapse
|
2
|
Rehn DR, Fink A, Dempwolff AL, Dreuw A. Analytical Gradients for Electron-Attached and Ionized States for the Algebraic-Diagrammatic Construction Scheme for the Electron Propagator up to Third Order. J Phys Chem A 2024; 128:8795-8802. [PMID: 39320963 DOI: 10.1021/acs.jpca.4c04435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The derivation and implementation of analytical gradients for methods based on the non-Dyson algebraic diagrammatic construction for the electron propagator, IP-ADC and EA-ADC, up to the third order is presented. Using nuclear gradients, ground-state equilibrium structures for small open-shell systems are calculated. In addition, we investigated the performance of IP/EA-ADC methods for the calculation of adiabatic ionization potentials and electron affinities for medium-sized organic molecules.
Collapse
Affiliation(s)
- Dirk R Rehn
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Andreas Fink
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Adrian L Dempwolff
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Ahn DH, Nakajima T, Hirao K, Song JW. Long-range Corrected Density Functional Theory Including a Two-Gaussian Hartree-Fock Operator for High Accuracy Core-excitation Energy Calculations of Both the Second- and Third-Row Atoms (LC2gau-core-BOP). J Chem Theory Comput 2024. [PMID: 39106473 DOI: 10.1021/acs.jctc.4c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
In the previous work, LCgau-core-BOP, which includes the short-range interelectronic Gaussian attenuating Hartree-Fock (HF) exchange to the long-range HF exchange, showed high accuracy core-excitation energies from 1s orbitals of the second-row atoms (1s → π*, 1s → σ*, 1s → n*, and 1s → Rydberg), but underestimates the core-excitation energies from 1s orbitals of the third-row atoms. To improve this, we added one more Gaussian attenuating HF exchange to LCgau-core-BOP. We named it LC2gau-core-BOP, which achieves a mean absolute error (MAE) of 0.6 and 0.3 eV for core excitation energies of the second- and third-row atoms of the tested small molecules, respectively. We found that the inclusion of the short-range interelectronic HF exchange at a distance ranging from 0.2 to 0.6 a.u. contributes to the increase of performances on 1s orbital energy calculations of the second-row atoms, while the inclusion of more short-range interelectronic HF exchange at a distance ranging from 0 to 0.2 a.u. does to the increase of performance on 1s orbital energy calculations of the third-row atoms. It is notable that all of these improvements were accomplished using flexible Gaussian attenuating HF exchange inclusion. LC2gau-core-BOP shows deviations of less than 0.8 eV from experimental values for all of the core-excitation energies of the tested medium-size molecules consisting of thymine, oxazole, glycine, and dibenzothiophene sulfone. Moreover, by optimizing one parameter of the OP correlation functional, LC2gau-core-BOP provides atomization energies over the G3 test set with an accuracy comparable to that of B3LYP.
Collapse
Affiliation(s)
- Dae-Hwan Ahn
- Department of Chemistry Education, Daegu University, Gyeongsan-si 113-8656, Korea
| | | | - Kimihiko Hirao
- RIKEN Center for Computational Science, Kobe 650-0047, Japan
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8501, Japan
| | - Jong-Won Song
- Department of Chemistry Education, Daegu University, Gyeongsan-si 113-8656, Korea
| |
Collapse
|
4
|
Fransson T, Pettersson LGM. Evaluating the Impact of the Tamm-Dancoff Approximation on X-ray Spectrum Calculations. J Chem Theory Comput 2024; 20:2181-2191. [PMID: 38388006 PMCID: PMC10938498 DOI: 10.1021/acs.jctc.3c01341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 02/24/2024]
Abstract
The impact of the Tamm-Dancoff approximation (TDA) for time-dependent density functional theory (TDDFT) calculations of X-ray absorption and X-ray emission spectra (XAS and XES) is investigated, showing small discrepancies in the excitation energies and intensities. Through explicit diagonalization of the TDDFT Hessian, XES was considered by using full TDDFT with a core-hole reference state. This has previously not been possible with most TDDFT implementations as a result of the presence of negative eigenvalues. Furthermore, a core-valence separation (CVS) scheme for XES is presented, in which only elements including the core-hole are considered, resulting in a small Hessian with the dimension of the number of remaining occupied orbitals of the same spin as the core-hole (CH). The resulting spectra are in surprisingly good agreement with the full-space counterpart, illustrating the weak coupling between the valence-valence and valence-CH transitions. Complications resulting from contributions from the discretized continuum are discussed, which can occur for TDDFT calculations of XAS and XES and for TDA calculations of XAS. In conclusion, we recommend that TDA be used when calculating X-ray emission spectra, and either CVS-TDA or CVS-TDDFT can be used for X-ray absorption spectra.
Collapse
Affiliation(s)
- Thomas Fransson
- Department of Physics, AlbaNova
University Center, Stockholm University, 109 61 Stockholm, Sweden
| | - Lars G. M. Pettersson
- Department of Physics, AlbaNova
University Center, Stockholm University, 109 61 Stockholm, Sweden
| |
Collapse
|
5
|
Mester D, Kállay M. Double-Hybrid Density Functional Theory for Core Excitations: Theory and Benchmark Calculations. J Chem Theory Comput 2023; 19:1310-1321. [PMID: 36721871 PMCID: PMC9979613 DOI: 10.1021/acs.jctc.2c01222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The double-hybrid (DH) time-dependent density functional theory is extended to core excitations. Two different DH formalisms are presented utilizing the core-valence separation (CVS) approximation. First, a CVS-DH variant is introduced relying on the genuine perturbative second-order correction, while an iterative analogue is also presented using our second-order algebraic-diagrammatic construction [ADC(2)]-based DH ansatz. The performance of the new approaches is tested for the most popular DH functionals using the recently proposed XABOOM [J. Chem. Theory Comput.2021, 17, 1618] benchmark set. In order to make a careful comparison, the accuracy and precision of the methods are also inspected. Our results show that the genuine approaches are highly competitive with the more advanced CVS-ADC(2)-based methods if only excitation energies are required. In contrast, as expected, significant differences are observed in oscillator strengths; however, the precision is acceptable for the genuine functionals as well. Concerning the performance of the CVS-DH approaches, the PBE0-2/CVS-ADC(2) functional is superior, while its spin-opposite-scaled variant is also recommended as a cost-effective alternative. For these approaches, significant improvements are realized in the error measures compared with the popular CVS-ADC(2) method.
Collapse
Affiliation(s)
- Dávid Mester
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Müegyetem rkp. 3, H-1111Budapest, Hungary,ELKH-BME
Quantum Chemistry Research Group, Müegyetem rkp. 3, H-1111Budapest, Hungary,MTA-BME
Lendület Quantum Chemistry Research Group, Müegyetem rkp. 3, H-1111Budapest, Hungary,
| | - Mihály Kállay
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Müegyetem rkp. 3, H-1111Budapest, Hungary,ELKH-BME
Quantum Chemistry Research Group, Müegyetem rkp. 3, H-1111Budapest, Hungary,MTA-BME
Lendület Quantum Chemistry Research Group, Müegyetem rkp. 3, H-1111Budapest, Hungary,
| |
Collapse
|
6
|
Zamani AY, Hratchian HP. Assessing the performance of ΔSCF and the diagonal second-order self-energy approximation for calculating vertical core excitation energies. J Chem Phys 2022; 157:084115. [DOI: 10.1063/5.0100638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Vertical core excitation energies are obtained using a combination of the ΔSCF method and the diagonal second-order (D2) self-energy approximation. These methods are applied to a set of neutral molecules and their anionic forms. An assessment of the results with the inclusion of relativistic effects is presented. For core excitations involving delocalized symmetry orbitals, the applied composite method improves upon the overestimation of ΔSCF by providing approximate values close to experimental K-shell transition energies. The importance of both correlation and relaxation contributions to the vertical core-excited state energies, the concept of local and non-local core orbitals, and the consequences of breaking symmetry are discussed.
Collapse
Affiliation(s)
| | - Hrant Patrick Hratchian
- Department of Chemistry & Biochemistry, University of California Merced, United States of America
| |
Collapse
|