1
|
Douglas JF, Yuan QL, Zhang J, Zhang H, Xu WS. A dynamical system approach to relaxation in glass-forming liquids. SOFT MATTER 2024; 20:9140-9160. [PMID: 39512171 DOI: 10.1039/d4sm00976b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The "classical" thermodynamic and statistical mechanical theories of Gibbs and Boltzmann are both predicated on axiomatic assumptions whose applicability is hard to ascertain. Theoretical objections and an increasing number of observed deviations from these theories have led to sustained efforts to develop an improved mathematical and physical foundation for them, and the search for appropriate extensions that are generally applicable to condensed materials at low temperatures (T) and high material densities where the assumptions of these theories start to become particularly questionable. These theoretical efforts have largely focused on minimal models of condensed material systems, such as the Fermi-Ulam-Pasta-Tsingou model, and other simplified models of condensed materials that are amenable to numerical and analytic treatments and that can serve to illuminate essential features of relaxation processes in condensed materials under conditions approaching integrable dynamics where clear departures from classical thermodynamics and dynamics can be generally expected. These studies indicate an apparently general multi-step relaxation process, corresponding to an initial "fast" relaxation process (termed the fast β-relaxation in the context of cooled liquids), followed by a longer "equipartition time", namely, the α-relaxation time τα in the context of cooled liquids. This relaxation timescale can be enormously longer than the fast β-relaxation time τβ so that τα is the primary parameter governing the rate at which the material comes into equilibrium, and thus is a natural focus of theoretical attention. Since the dynamics of these simplified dynamical systems, originally intended as simplified models of real crystalline materials exhibiting anharmonic interactions, greatly resemble the observed relaxation dynamics of both heated crystals and cooled liquids, we adapt this dynamical system approach to the practical matter of estimating relaxation times in both cooled liquids and crystals at elevated temperatures, which we identify as weakly non-integrable dynamical systems.
Collapse
Affiliation(s)
- Jack F Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.
| | - Qi-Lu Yuan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jiarui Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Wen-Sheng Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
2
|
Yuan QL, Xu X, Douglas JF, Xu WS. Understanding Relaxation in the Kob-Andersen Liquid Based on Entropy, String, Shoving, Localization, and Parabolic Models. J Phys Chem B 2024; 128:10999-11021. [PMID: 39441733 DOI: 10.1021/acs.jpcb.4c04806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
We assess the validity of a range of models of glass formation based on molecular dynamics simulation results of the Kob-Andersen (KA) model system under a wide range of constant volume and constant pressure conditions. These models include the Adam-Gibbs model emphasizing configurational entropy, the string model emphasizing collective particle exchange motion, the shoving model emphasizing material elasticity, the localization model emphasizing dynamical free volume, and parabolic models based on the ideas of dynamic facilitation and, alternatively, the hypothesis that glass formation involves an avoided critical point. We demonstrate that these seemingly disparate models all provide a reasonable description of structural relaxation and diffusion data for the KA model system under all simulation conditions considered. Hence, the present study points to some unity in our understanding of the relationship between leading models of glass formation, supporting inferences drawn from previous studies of polymeric glass-forming liquids.
Collapse
Affiliation(s)
- Qi-Lu Yuan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiaolei Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jack F Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Wen-Sheng Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
3
|
Zheng X, Xu L, Douglas JF, Xia W. Role of additive size in the segmental dynamics and mechanical properties of cross-linked polymers. NANOSCALE 2024; 16:16919-16932. [PMID: 39189325 DOI: 10.1039/d4nr02631d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Thermoset materials often involve the addition of molecular and nanoparticle additives to alter various chemo-physical properties of importance in their ultimate applications. The resulting compositional heterogeneities can lead to either enhancement or degradation of thermoset properties, depending on the additive chemical structure and concentration. We tentatively explore this complex physical phenomenon through the consideration of a model polymeric additive to our coarse-grained (CG) thermoset investigated in previous works by simply varying the size of additive segments compared to those of polymer melt. We find that the additive modified thermoset material becomes chemically heterogeneous from additive aggregation when the additive segments become much smaller than those of the thermoset molecules, and a clear evidence is observed in the spatial distribution of local molecular stiffness estimated from Debye-Waller factor 〈u2〉. Despite the non-monotonic variation trends observed in dynamical and mechanical properties with decreasing additive segmental size, both the structural relaxation time and moduli (i.e., shear modulus and bulk modulus) exhibit scaling laws with 〈u2〉. The present work highlights the complex role of additive size played in the dynamical and mechanical properties of thermoset polymers, which should provide a better understanding for the glass formation process of cross-linked polymer composites.
Collapse
Affiliation(s)
- Xiangrui Zheng
- Department of Mechanics, School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lan Xu
- Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50011, USA.
| | - Jack F Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.
| | - Wenjie Xia
- Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50011, USA.
| |
Collapse
|
4
|
Douglas JF, Horkay F. Influence of swelling on the elasticity of polymer networks cross-linked in the melt state: Test of the localization model of rubber elasticity. J Chem Phys 2024; 160:224903. [PMID: 38856072 PMCID: PMC11305141 DOI: 10.1063/5.0212901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024] Open
Abstract
The elasticity of polymer networks, formed by cross-linking high molecular mass polymers in the melt state and then swollen by a solvent, involves contributions from both the presence of cross-link network junctions and the interchain interactions associated with the combined effect of excluded volume interactions and topological constraints that become modified when the network is swollen. We test the capacity of the previously developed localization model of rubber elasticity, a mean field "tube model," to describe changes in elasticity observed in classical experimental studies of the mechanical properties of this type of network. In order to obtain a satisfactory comparison to the experiments, it was found to be necessary to account for the independently observed tendency of the network junctions to become localized in the network with appreciable swelling, as well as the interchain interactions emphasized in previous discussions of the localization model.
Collapse
Affiliation(s)
- Jack F. Douglas
- Material Measurement Laboratory, Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Ferenc Horkay
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
5
|
Yang Z, Xu X, Douglas JF, Xu WS. Confinement effect of inter-arm interactions on glass formation in star polymer melts. J Chem Phys 2024; 160:044503. [PMID: 38265089 DOI: 10.1063/5.0185412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/25/2023] [Indexed: 01/25/2024] Open
Abstract
We utilized molecular dynamic simulation to investigate the glass formation of star polymer melts in which the topological complexity is varied by altering the number of star arms (f). Emphasis was placed on how the "confinement effect" of repulsive inter-arm interactions within star polymers influences the thermodynamics and dynamics of star polymer melts. All the characteristic temperatures of glass formation were found to progressively increase with increasing f, but unexpectedly the fragility parameter KVFT was found to decrease with increasing f. As previously observed, stars having more than 5 or 6 arms adopt an average particle-like structure that is more contracted relative to the linear polymer size having the same mass and exhibit a strong tendency for intermolecular and intramolecular segregation. We systematically analyzed how varying f alters collective particle motion, dynamic heterogeneity, the decoupling exponent ζ phenomenologically linking the slow β- and α-relaxation times, and the thermodynamic scaling index γt. Consistent with our hypothesis that the segmental dynamics of many-arm star melts and thin supported polymer films should exhibit similar trends arising from the common feature of high local segmental confinement, we found that ζ increases considerably with increasing f, as found in supported polymer films with decreasing thickness. Furthermore, increasing f led to greatly enhanced elastic heterogeneity, and this phenomenon correlates strongly with changes in ζ and γt. Our observations should be helpful in building a more rational theoretical framework for understanding how molecular topology and geometrical confinement influence the dynamics of glass-forming materials more broadly.
Collapse
Affiliation(s)
- Zhenyue Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
- Academy for Advanced Interdisciplinary Studies, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Xiaolei Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Jack F Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Wen-Sheng Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| |
Collapse
|
6
|
Nie W, Douglas JF, Xia W. Competing Effects of Molecular Additives and Cross-Link Density on the Segmental Dynamics and Mechanical Properties of Cross-Linked Polymers. ACS ENGINEERING AU 2023; 3:512-526. [PMID: 38144677 PMCID: PMC10739619 DOI: 10.1021/acsengineeringau.3c00043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/30/2023] [Accepted: 10/06/2023] [Indexed: 12/26/2023]
Abstract
The introduction of molecular additives into thermosets often results in changes in their dynamics and mechanical properties that can have significant ramifications for diverse applications of this broad class of materials such as coatings, high-performance composites, etc. Currently, there is limited fundamental understanding of how such additives influence glass formation in these materials, a problem of broader significance in glass-forming materials. To address this fundamental problem, here, we employ a simplified coarse-grained (CG) model of a polymer network as a model of thermoset materials and then introduce a polymer additive having the same inherent rigidity and polymer-polymer interaction strength as the cross-linked polymer matrix. This energetically "neutral" or "self-plasticizing" additive model gives rise to non-trivial changes in the dynamics of glass formation and provides an important theoretical reference point for the technologically more important case of interacting additives. Based on this rather idealized model, we systematically explore the combined effect of varying the additive mass percentage (m) and cross-link density (c) on the segmental relaxation dynamics and mechanical properties of a model thermoset material with additives. We find that increasing the additive mass percentage m progressively decreases both the glass-transition temperature Tg and the fragility of glass formation, a trend opposite to increasing c so that these thermoset variables clearly have a competing effect on glass formation in these model materials. Moreover, basic mechanical properties (i.e., bulk, shear, and tensile moduli) likewise exhibit a competitive variation with the increase of m and c, which are strongly correlated with the Debye-Waller parameter ⟨u2⟩, a measure of material stiffness at a molecular scale. Our findings prove beneficial in the development of structure-property relationships for the cross-linked polymers, which could help guide the design of such network materials with tailored physical properties.
Collapse
Affiliation(s)
- Wenjian Nie
- Department
of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Jack F. Douglas
- Materials
Science and Engineering Division, National
Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Wenjie Xia
- Department
of Aerospace Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
7
|
Zhang W, Douglas JF, Starr FW. How Dispersity from Step-Growth Polymerization Affects Polymer Dynamics from Coarse-Grained Molecular Simulations. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wengang Zhang
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland20899, United States
| | - Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland20899, United States
| | - Francis W. Starr
- Department of Physics, Wesleyan University, Middletown, Connecticut06459, United States
| |
Collapse
|
8
|
Zheng X, Guo Y, Douglas JF, Xia W. Competing Effects of Cohesive Energy and Cross-Link Density on the Segmental Dynamics and Mechanical Properties of Cross-Linked Polymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiangrui Zheng
- Department of Mechanics, School of Physical Science and Engineering, Beijing Jiaotong Uiversity, Beijing, 100044, China
| | - Yafang Guo
- Department of Mechanics, School of Physical Science and Engineering, Beijing Jiaotong Uiversity, Beijing, 100044, China
| | - Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Wenjie Xia
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
9
|
Mahmud GA, Zhang H, Douglas JF. The Dynamics of Metal Nanoparticles on a Supporting Interacting Substrate. J Chem Phys 2022; 157:114505. [DOI: 10.1063/5.0105208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The interaction strength of the nanoparticles NPs with the supporting substrate can greatly influence both the rate and selectivity of catalytic reactions, but the origins of these changes in reactivity arising from the combined effects of NP structure and composition, and NP-substrate interaction are currently not well-understood. Since the dynamics of the NPs are implicated in many NP-based catalytic processes, we investigate how the supporting substrate alters the dynamics of representative Cu NPs on a model graphene substrate, and a formal extension of this model in which the interaction strength between the NPs and the substrate is varied. We particularly emphasize how the substrate interaction strength alters the local mobility and potential energy fluctuations in the NP interfacial region, given the potential relevance of such fluctuations to NP reactivity. We find the NP melting temperature Tm progressively shifts downward with an increasing NP-substrate interaction strength, and that this change in NP thermodynamic stability is mirrored by changes in local mobility and potential energy fluctuations in the interfacial region that can be described as "colored noise". Atomic diffusivity D in the "free" and substrate NP interfacial regions is quantified and observed variations are rationalized by the localization model linking D to the mean square atomic displacement on a "caging" timescale on the order of a ps. In summary, we find the supporting substrate strongly modulates the stability and dynamics of supported NPs, effects that have evident practical relevance for understanding changes in NP catalytic behavior derived from the supporting substrate.
Collapse
Affiliation(s)
- Gazi Arif Mahmud
- Chemical and Materials Engineering, University of Alberta, Canada
| | - Hao Zhang
- Chemical and Materials Engineering, University of Alberta, Canada
| | - Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, United States of America
| |
Collapse
|
10
|
Zheng X, Guo Y, Douglas JF, Xia W. Understanding the role of cross-link density in the segmental dynamics and elastic properties of cross-linked thermosets. J Chem Phys 2022; 157:064901. [PMID: 35963735 DOI: 10.1063/5.0099322] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cross-linking is known to play a pivotal role in the relaxation dynamics and mechanical properties of thermoset polymers, which are commonly used in structural applications because of their light weight and inherently strong nature. Here, we employ a coarse-grained (CG) polymer model to systematically explore the effect of cross-link density on basic thermodynamic properties as well as corresponding changes in the segmental dynamics and elastic properties of these network materials upon approaching their glass transition temperatures (Tg). Increasing the cross-link density unsurprisingly leads to a significant slowing down of the segmental dynamics, and the fragility K of glass formation shifts in lockstep with Tg, as often found in linear polymer melts when the polymer mass is varied. As a consequence, the segmental relaxation time τα becomes almost a universal function of reduced temperature, (T - Tg)/Tg, a phenomenon that underlies the applicability of the "universal" Williams-Landel-Ferry (WLF) relation to many polymer materials. We also test a mathematical model of the temperature dependence of the linear elastic moduli based on a simple rigidity percolation theory and quantify the fluctuations in the local stiffness of the network material. The moduli and distribution of the local stiffness likewise exhibit a universal scaling behavior for materials having different cross-link densities but fixed (T - Tg)/Tg. Evidently, Tg dominates both τα and the mechanical properties of our model cross-linked polymer materials. Our work provides physical insights into how the cross-link density affects glass formation, aiding in the design of cross-linked thermosets and other structurally complex glass-forming materials.
Collapse
Affiliation(s)
- Xiangrui Zheng
- Department of Mechanics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Yafang Guo
- Department of Mechanics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jack F Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Wenjie Xia
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, USA
| |
Collapse
|
11
|
Novikov VN. Upper bound of fragility from spatial fluctuations of shear modulus and boson peak in glasses. Phys Rev E 2022; 106:024611. [PMID: 36109942 DOI: 10.1103/physreve.106.024611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
It is shown that the normalized rms fluctuation of the shear modulus on the medium-range order scale in glasses correlates with fragility: the higher fragility, the smaller the fluctuation amplitude. The latter is calculated within the heterogeneous elasticity theory using the data on the boson peak in glasses. On a smaller scale corresponding to cooperative structural relaxation, the normalized rms fluctuation of the infinite-frequency shear modulus was estimated using the data on the decoupling of viscosity and diffusion in supercooled liquids. These fluctuations are much smaller in amplitude, and, in contrast, they increase with increasing fragility. Extrapolation predicts intersection of both rms fluctuations and disappearing of the boson peak at the upper limit to fragility ≈180.
Collapse
Affiliation(s)
- V N Novikov
- Institute of Automation and Electrometry, Siberian Branch of the Russian Academy of Sciences, 1 Koptyug Avenue, Novosibirsk 630090, Russia
| |
Collapse
|