1
|
Zhong A, DeWeese MR. Beyond Linear Response: Equivalence between Thermodynamic Geometry and Optimal Transport. PHYSICAL REVIEW LETTERS 2024; 133:057102. [PMID: 39159082 DOI: 10.1103/physrevlett.133.057102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 08/21/2024]
Abstract
A fundamental result of thermodynamic geometry is that the optimal, minimal-work protocol that drives a nonequilibrium system between two thermodynamic states in the slow-driving limit is given by a geodesic of the friction tensor, a Riemannian metric defined on control space. For overdamped dynamics in arbitrary dimensions, we demonstrate that thermodynamic geometry is equivalent to L^{2} optimal transport geometry defined on the space of equilibrium distributions corresponding to the control parameters. We show that obtaining optimal protocols past the slow-driving or linear response regime is computationally tractable as the sum of a friction tensor geodesic and a counterdiabatic term related to the Fisher information metric. These geodesic-counterdiabatic optimal protocols are exact for parametric harmonic potentials, reproduce the surprising nonmonotonic behavior recently discovered in linearly biased double well optimal protocols, and explain the ubiquitous discontinuous jumps observed at the beginning and end times.
Collapse
Affiliation(s)
- Adrianne Zhong
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, USA
- Redwood Center for Theoretical Neuroscience, University of California, Berkeley, Berkeley, California 94720, USA
| | - Michael R DeWeese
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, USA
- Redwood Center for Theoretical Neuroscience, University of California, Berkeley, Berkeley, California 94720, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
2
|
Gupta D, Klapp SHL, Sivak DA. Efficient control protocols for an active Ornstein-Uhlenbeck particle. Phys Rev E 2023; 108:024117. [PMID: 37723713 DOI: 10.1103/physreve.108.024117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/11/2023] [Indexed: 09/20/2023]
Abstract
Designing a protocol to efficiently drive a stochastic system is an active field of research. Here we extend such control theory to an active Ornstein-Uhlenbeck particle (AOUP) in a bistable potential, driven by a harmonic trap. We find that protocols designed to minimize the excess work (up to linear response) perform better than naive protocols with constant velocity for a wide range of protocol durations.
Collapse
Affiliation(s)
- Deepak Gupta
- Nordita, Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-106 91 Stockholm, Sweden
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
- Institut für Theoretische Physik, Hardenbergstr. 36, Technische Universität Berlin, D-10623 Berlin, Germany
| | - Sabine H L Klapp
- Institut für Theoretische Physik, Hardenbergstr. 36, Technische Universität Berlin, D-10623 Berlin, Germany
| | - David A Sivak
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| |
Collapse
|
3
|
Abstract
F1-ATPase is a rotary molecular motor that in vivo is subject to strong nonequilibrium driving forces. There is great interest in understanding the operational principles governing its high efficiency of free-energy transduction. Here we use a near-equilibrium framework to design a nontrivial control protocol to minimize dissipation in rotating F1 to synthesize adenosine triphosphate. We find that the designed protocol requires much less work than a naive (constant-velocity) protocol across a wide range of protocol durations. Our analysis points to a possible mechanism for energetically efficient driving of F1 in vivo and provides insight into free-energy transduction for a broader class of biomolecular and synthetic machines.
Collapse
Affiliation(s)
- Deepak Gupta
- Department of Physics, Simon Fraser University, BurnabyV5A 1S6, British Columbia, Canada
- Institute for Theoretical Physics, Technical University of Berlin, Hardenbergstr. 36, BerlinD-10623, Germany
| | - Steven J Large
- Department of Physics, Simon Fraser University, BurnabyV5A 1S6, British Columbia, Canada
| | - Shoichi Toyabe
- Department of Applied Physics, Tohoku University, Aoba 6-6-05, Sendai980-8579, Japan
| | - David A Sivak
- Department of Physics, Simon Fraser University, BurnabyV5A 1S6, British Columbia, Canada
| |
Collapse
|
4
|
Louwerse MD, Sivak DA. Connections between efficient control and spontaneous transitions in an Ising model. Phys Rev E 2022; 106:064124. [PMID: 36671088 DOI: 10.1103/physreve.106.064124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
A system can be driven between metastable configurations by a time-dependent driving protocol, which uses external control parameters to change the potential energy of the system. Here we investigate the correspondence between driving protocols that are designed to minimize work and the spontaneous transition paths of the system in the absence of driving. We study the spin-inversion reaction in a 2D Ising model, quantifying the timing of each spin flip and heat flow to the system during both a minimum-work protocol and a spontaneous transition. The general order of spin flips during the transition mechanism is preserved between the processes, despite the coarseness of control parameters that are unable to reproduce more detailed features of the spontaneous mechanism. Additionally, external control parameters provide energy to each system component to compensate changes in internal energy, showing how control parameters are tuned during a minimum-work protocol to counteract underlying energetic features. This paper supports a correspondence between minimum-work protocols and spontaneous transition mechanisms.
Collapse
Affiliation(s)
- Miranda D Louwerse
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A1S6
| | - David A Sivak
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A1S6
| |
Collapse
|
5
|
Kamizaki LP, Bonança MVS, Muniz SR. Performance of optimal linear-response processes in driven Brownian motion far from equilibrium. Phys Rev E 2022; 106:064123. [PMID: 36671193 DOI: 10.1103/physreve.106.064123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022]
Abstract
Considering the paradigmatic driven Brownian motion, we perform extensive numerical analysis on the performance of optimal linear-response processes far from equilibrium. We focus on the overdamped regime where exact optimal processes are known analytically and most experiments operate. This allows us to compare the optimal processes obtained in linear response and address their relevance to experiments using realistic parameter values from experiments with optical tweezers. Our results help assess the accuracy of perturbative methods in calculating the irreversible work for cases where the exact solution might be difficult to access. For that, we present a performance metric comparing the approximate optimal solution to the exact one. Our main result is that optimal linear-response processes can perform surprisingly well, even far from where they were expected.
Collapse
Affiliation(s)
- Lucas P Kamizaki
- Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo, Brazil.,Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, São Paulo, Brazil
| | - Marcus V S Bonança
- Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo, Brazil
| | - Sérgio R Muniz
- Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, São Paulo, Brazil
| |
Collapse
|
6
|
Blaber S, Sivak DA. Optimal control with a strong harmonic trap. Phys Rev E 2022; 106:L022103. [PMID: 36110009 DOI: 10.1103/physreve.106.l022103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Quadratic trapping potentials are widely used to experimentally probe biopolymers and molecular machines and drive transitions in steered molecular-dynamics simulations. Approximating energy landscapes as locally quadratic, we design multidimensional trapping protocols that minimize dissipation. The designed protocols are easily solvable and applicable to a wide range of systems. The approximation does not rely on either fast or slow limits and is valid for any duration provided the trapping potential is sufficiently strong. We demonstrate the utility of the designed protocols with a simple model of a periodically driven rotary motor. Our results elucidate principles of effective single-molecule manipulation and efficient nonequilibrium free-energy estimation.
Collapse
Affiliation(s)
- Steven Blaber
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - David A Sivak
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| |
Collapse
|