1
|
Donaldson PM, Hawkins AP, Howe RF. Distinctive signatures and ultrafast dynamics of Brønsted sites, silanol nests and adsorbed water in zeolites revealed by 2D-IR spectroscopy. Chem Sci 2025; 16:6688-6704. [PMID: 40144509 PMCID: PMC11935784 DOI: 10.1039/d4sc08093a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Characterising hydroxyl groups in zeolites and other amorphous solids often relies on methods such as IR and NMR spectroscopy. Their power to distinguish different types of hydroxyl groups diminishes when band broadening from hydrogen bonding and structural heterogeneity occurs. In support of this problem, we report in situ femtosecond 2D-IR spectroscopy of some of the different types of hydroxyl groups present in zeolites. Despite the samples studied being optically scattering pellets, we show that their structural and rotational dynamics can be determined. We show that the hydroxyl groups of Brønsted acid sites, silanol defects and water of hydration display distinct features in their 2D-IR spectra. Brønsted site hydroxyl group structural distributions have characteristic inhomogeneously broadened 2D-IR bandshapes. Water of hydration and partially hydrogen bonded silanol groups give unique 2D-IR cross peak signatures off-diagonal. Hydrogen bonded silanol groups arising from vacancy defects (silanol nests) show a distinctive 2D-IR signature with unique ultrafast dynamics observed to be identical between ZSM-5 and silicalite-1. 2D-IR spectroscopy makes IR measurements quantitative, and we use this property to estimate the concentration of ZSM-5 silanol nest hydroxyl groups relative to the number of Brønsted sites. Overlapping silanol nest spectral features are revealed by frequency dependence of their vibrational lifetime. In contrast to other framework hydroxyls, the silanol nest band shows picosecond 2D-IR anisotropy decay and spectral diffusion. The signatures of nest structural mobility revealed here presents new opportunities to understand these hitherto elusive structural defects.
Collapse
Affiliation(s)
- Paul M Donaldson
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory Harwell Science and Innovation Campus, Didcot OX11 0QX UK
| | - Alexander P Hawkins
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory Harwell Science and Innovation Campus, Didcot OX11 0QX UK
| | - Russell F Howe
- Department of Chemistry, University of Aberdeen Aberdeen AB24 3UE UK
| |
Collapse
|
2
|
Parker SF. The Analysis of Vibrational Spectra: Past, Present and Future. Chempluschem 2025; 90:e202400461. [PMID: 39523825 DOI: 10.1002/cplu.202400461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/05/2024] [Indexed: 11/16/2024]
Abstract
Vibrational spectroscopy can be said to have started with the seminal work of Coblentz in the 1900s, who recorded the first recognisable infrared spectra. Today, vibrational spectroscopy is ubiquitous and there are many ways to measure a vibrational spectrum. But this is usually only the first step, almost always there is a need to assign the resulting spectra: "what property of the system results in a feature at this energy"? How this question has been answered has changed over the last century, as our understanding of the fundamental physics of matter has evolved. In this Perspective, I will present my view of how the analysis of vibrational spectra has evolved over time. The article is divided into three sections: past, present and future. The "past" section consists of a very brief history of vibrational spectroscopy. The "present" is centered around ab initio studies, particularly with density functional theory (DFT) and I will describe how this has become almost routine. For the "future", I will extrapolate current trends and also speculate as to what might come next.
Collapse
Affiliation(s)
- Stewart F Parker
- ISIS Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Chilton, OX11 0QX, UK
- School of Chemistry, University of Glasgow, Joseph Black Building, Glasgow, G12 8QQ, UK
| |
Collapse
|
3
|
Wat JH, Pizzala NJ, Reppert M. Isotope Reverse-Labeled Infrared Spectroscopy as a Probe of In-Cell Protein Structure. J Phys Chem B 2024; 128:9923-9934. [PMID: 39358675 DOI: 10.1021/acs.jpcb.4c03068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
While recent years have seen great progress in determining the three-dimensional structure of isolated proteins, monitoring protein structure inside live cells remains extremely difficult. Here, we examine the utility of Fourier transform infrared (FTIR) spectroscopy as a probe of protein structure in live bacterial cells. Selective isotope enrichment is used both to distinguish recombinantly expressed NuG2b protein from the cellular background and to examine the conformation of specific residues in the protein. To maximize labeling flexibility and to improve spectral resolution between label and main-band peaks, we carry out isotope-labeling experiments in "reverse-labeling" mode: cells are initially grown in 13C-enriched media, with specific 12C-labeled amino acids added when protein expression is induced. 1 Because FTIR measurements require only around 20 μL of sample and each measurement takes only a few minutes to complete, isotope-labeling costs are minimal, allowing us to label multiple different residues in parallel in simultaneously grown cultures. For the stable NuG2b protein, isotope difference spectra from live bacterial cultures are nearly identical to spectra from isolated proteins, confirming that the structure of the protein is unperturbed by the cellular environment. By combining such measurements with site-directed mutagenesis, we further demonstrate that the local conformation of individual amino acids can be monitored, allowing us to determine, for example, whether a specific site in the protein contributes to α-helix or β-sheet structures.
Collapse
Affiliation(s)
- Jacob H Wat
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - Nicolas J Pizzala
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - Mike Reppert
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| |
Collapse
|
4
|
Casas AM, Idris NS, Wen V, Patterson JP, Ge NH. Scattering Elimination in 2D IR Immune from Detector Artifacts. J Phys Chem B 2024; 128:8835-8845. [PMID: 39188212 PMCID: PMC11403676 DOI: 10.1021/acs.jpcb.4c04220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Highly scattering samples, such as polymer droplets or solid-state powders, are difficult to study via coherent two-dimensional infrared (2D IR) spectroscopy. Previously, researchers have employed (quasi-) phase cycling, local-oscillator chopping, and polarization control to reduce scattering, but the latter method poses a limit on polarization-dependent measurements. Here, we present a method for Scattering Elimination Immune from Detector Artifacts (SEIFDA) in pump-probe 2D IR experiments. Our method extends the negative probe delay method of removing scattering from pump-probe spectroscopy to 2D experiments. SEIFDA works well for all polarizations when combined with the optimized noise reduction scheme to remove additive and multiplicative noise. We demonstrate that our method can be employed with any polarization scheme and reliably lowers the scattering at parallel polarization to comparable levels to the conventional 8-frame phase cycling with probe chopping (8FPCPC) at perpendicular polarization. Our system can acquire artifact free spectra in parallel polarization when the signal intensity is as little as 5% of the intensity of the interference between the pump pulses scattered into the detector. It reduces the time required to characterize the scattering term by at least 50% over 8FPCPC. Through detailed analysis of detector nonlinearity, we show that the performance of 8FPCPC can be improved by incorporating nonlinear correction factors, but it is still worse than that of SEIFDA. Application of SEIFDA to study the encapsulation of Nile red in polymer droplets demonstrates that this method will be very useful for probing highly scattering systems.
Collapse
Affiliation(s)
- Anneka Miller Casas
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Nehal S Idris
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Victor Wen
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Joseph P Patterson
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Nien-Hui Ge
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
5
|
Hung ST, Roget SA, Fayer MD. Effects of Nanoconfinement on Dynamics in Concentrated Aqueous Magnesium Chloride Solutions. J Phys Chem B 2024; 128:5513-5527. [PMID: 38787935 DOI: 10.1021/acs.jpcb.4c01639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Water behavior in various natural and manufactured settings is influenced by confinement in organic or inorganic frameworks and the presence of solutes. Here, the effects on dynamics from both confinement and the addition of solutes are examined. Specifically, water and ion dynamics in concentrated (2.5-4.2 m) aqueous magnesium chloride solutions confined in mesoporous silica (2.8 nm pore diameter) were investigated using polarization selective pump-probe and 2D infrared spectroscopies. Fitting the rotational and spectral diffusion dynamics measured by the vibrational probe, selenocyanate, with a previously developed two-state model revealed distinct behaviors at the interior of the silica pores (core state) and near the wall of the confining framework (shell state). The shell dynamics are noticeably slower than the bulk, or core, dynamics. The concentration-dependent slowing of the dynamics aligns with behavior in the bulk solutions, but the spectrally separated water-associated and Mg2+-associated forms of the selenocyanate probe exhibit different responses to confinement. The disparity in the complete reorientation times is larger upon confinement, but the spectral diffusion dynamics become more similar near the silica surface. The length scales that characterize the transition from surface-influenced to bulk-like behavior for the salt solutions in the pores are discussed and compared to those of pure water and an organic solvent confined in the same pores. These comparisons offer insights into how confinement modulates the properties of different liquids.
Collapse
Affiliation(s)
- Samantha T Hung
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Sean A Roget
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael D Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
6
|
Hawkins AP, Edmeades AE, Hutchison CDM, Towrie M, Howe RF, Greetham GM, Donaldson PM. Laser induced temperature-jump time resolved IR spectroscopy of zeolites. Chem Sci 2024; 15:3453-3465. [PMID: 38455000 PMCID: PMC10915812 DOI: 10.1039/d3sc06128k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/29/2024] [Indexed: 03/09/2024] Open
Abstract
Combining pulsed laser heating and time-resolved infrared (TR-IR) absorption spectroscopy provides a means of initiating and studying thermally activated chemical reactions and diffusion processes in heterogeneous catalysts on timescales from nanoseconds to seconds. To this end, we investigated single pulse and burst laser heating in zeolite catalysts under realistic conditions using TR-IR spectroscopy. 1 ns, 70 μJ, 2.8 μm laser pulses from a Nd:YAG-pumped optical parametric oscillator were observed to induce temperature-jumps (T-jumps) in zeolite pellets in nanoseconds, with the sample cooling over 1-3 ms. By adopting a tightly focused beam geometry, T-jumps as large as 145 °C from the starting temperature were achieved, demonstrated through comparison of the TR-IR spectra with temperature dependent IR absorption spectra and three dimensional heat transfer modelling using realistic experimental parameters. The simulations provide a detailed understanding of the temperature distribution within the sample and its evolution over the cooling period, which we observe to be bi-exponential. These results provide foundations for determining the magnitude of a T-jump in a catalyst/adsorbate system from its absorption spectrum and physical properties, and for applying T-jump TR-IR spectroscopy to the study of reactive chemistry in heterogeneous catalysts.
Collapse
Affiliation(s)
- Alexander P Hawkins
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory Didcot Oxon OX11 0QX UK
| | - Amy E Edmeades
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory Didcot Oxon OX11 0QX UK
| | - Christopher D M Hutchison
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory Didcot Oxon OX11 0QX UK
| | - Michael Towrie
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory Didcot Oxon OX11 0QX UK
| | - Russell F Howe
- Department of Chemistry, University of Aberdeen Aberdeen AB24 3UE UK
| | - Gregory M Greetham
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory Didcot Oxon OX11 0QX UK
| | - Paul M Donaldson
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory Didcot Oxon OX11 0QX UK
| |
Collapse
|
7
|
Goodenough I, Boyanich MC, McDonnell RP, Castellana L, Datta Devulapalli VS, Luo TY, Das P, Richard M, Rosi NL, Borguet E. Reversible solvent interactions with UiO-67 metal-organic frameworks. J Chem Phys 2024; 160:044711. [PMID: 38294314 DOI: 10.1063/5.0180924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/06/2023] [Indexed: 02/01/2024] Open
Abstract
The utility of UiO-67 Metal-Organic Frameworks (MOFs) for practical applications requires a comprehensive understanding of intermolecular host-guest MOF-analyte interactions. To investigate intermolecular interactions between UiO-67 MOFs and complex molecules, it is useful to evaluate the interactions with simple polar and non-polar analytes. This problem is approached by investigating the interactions of polar (acetone and isopropanol) and non-polar (n-heptane) molecules with functionalized UiO-67 MOFs via temperature programmed desorption mass spectrometry and temperature programmed Fourier transform infrared spectroscopy. We find that isopropanol, acetone, and n-heptane bind reversibly and non-destructively to UiO-67 MOFs, where MOF and analyte functionality influence relative binding strengths (n-heptane ≈ isopropanol > acetone). During heating, all three analytes diffuse into the internal pore environment and directly interact with the μ3-OH groups located within the tetrahedral pores, evidenced by the IR response of ν(μ3-OH). We observe nonlinear changes in the infrared cross sections of the ν(CH) modes of acetone, isopropanol, and n-heptane following diffusion into UiO-67. Similarly, acetone's ν(C=O) infrared cross section increases dramatically when diffused into UiO-67. Ultimately, this in situ investigation provides insights into how individual molecular functional groups interact with UiO MOFs and enables a foundation where MOF interactions with complex molecular systems can be evaluated.
Collapse
Affiliation(s)
- Isabella Goodenough
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Mikaela C Boyanich
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Ryan P McDonnell
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Lauren Castellana
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | | - Tian-Yi Luo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Prasenjit Das
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Mélissandre Richard
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Nathaniel L Rosi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Eric Borguet
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| |
Collapse
|
8
|
Baiz C, Bredenbeck J, Cho M, Jansen T, Krummel A, Roberts S. Celebrating 25 years of 2D IR spectroscopy. J Chem Phys 2024; 160:010401. [PMID: 38165102 DOI: 10.1063/5.0190809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024] Open
Affiliation(s)
- Carlos Baiz
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - Jens Bredenbeck
- Institute of Biophysics, Department of Physics, Goethe-University, Max von Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Thomas Jansen
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 6 9747 AG Groningen, The Netherlands
| | - Amber Krummel
- Colorado State University, Department of Chemistry, Fort Collins, Colorado 80523, USA
| | - Sean Roberts
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
9
|
Hack JH, Chen Y, Lewis NHC, Kung HH, Tokmakoff A. Strong H-bonding from Zeolite Bro̷nsted Acid Site to Water: Origin of the Broad IR Doublet. J Phys Chem B 2023; 127:11054-11063. [PMID: 38109274 DOI: 10.1021/acs.jpcb.3c06819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Hydrogen bonding between water molecules and zeolite Bro̷nsted acid sites (BAS) has received much attention due to the significant influence of water on the adsorption and catalytic properties of these widely used porous materials. When a single water molecule is adsorbed at the BAS, the zeolite O-H stretch vibration decreases in frequency and splits into two extraordinarily broad bands peaked near 2500 and 2900 cm-1 in the infrared (IR) spectrum. This broad doublet feature is the predominant IR signature used to identify and interpret water-BAS H-bonding at low hydration levels, but the origin of the band splitting is not well understood. In this study, we used broadband two-dimensional infrared (2D IR) spectroscopy to investigate zeolite HZSM-5 prepared with a single water molecule per BAS. We find that the 2D IR spectrum is not explained by the most common interpretation of Fermi resonance coupling between the stretch and the bend of the BAS OH group, which predicts intense excited-state transitions that are absent from the experimental results. We present an alternative model of a double-well proton stretch potential, where the band splitting is caused by excited-state tunneling through the proton-transfer barrier. This one-dimensional model reproduces the basic experimental pattern of transition frequencies and amplitudes, suggesting that the doublet bands may originate from a highly anharmonic potential in which the excited state proton wave functions are delocalized over the H-bond between zeolite BAS and adsorbed H2O. Additional details about molecular orientation and coordination of the adsorbed water molecule are also resolved in the 2D IR spectroscopy.
Collapse
Affiliation(s)
- John H Hack
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Yaxin Chen
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Nicholas H C Lewis
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Harold H Kung
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
10
|
Hill TD, Basnet S, Lepird HH, Rightnowar BW, Moran SD. Anisotropic dynamics of an interfacial enzyme active site observed using tethered substrate analogs and ultrafast 2D IR spectroscopy. J Chem Phys 2023; 159:165101. [PMID: 37870142 PMCID: PMC10597647 DOI: 10.1063/5.0167991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023] Open
Abstract
Enzymes accelerate the rates of biomolecular reactions by many orders of magnitude compared to bulk solution, and it is widely understood that this catalytic effect arises from a combination of polar pre-organization and electrostatic transition state stabilization. A number of recent reports have also implicated ultrafast (femtosecond-picosecond) timescale motions in enzymatic activity. However, complications arising from spatially-distributed disorder, the occurrence of multiple substrate binding modes, and the influence of hydration dynamics on solvent-exposed active sites still confound many experimental studies. Here we use ultrafast two-dimensional infrared (2D IR) spectroscopy and covalently-tethered substrate analogs to examine dynamical properties of the promiscuous Pyrococcus horikoshii ene-reductase (PhENR) active site in two binding configurations mimicking proposed "inactive" and "reactive" Michaelis complexes. Spectral diffusion measurements of aryl-nitrile substrate analogs reveal an end-to-end tradeoff between fast (sub-ps) and slow (>5 ps) motions. Fermi resonant aryl-azide analogs that sense interactions of coupled oscillators are described. Lineshape and quantum beat analyses of these probes reveal characteristics that correlate with aryl-nitrile frequency fluctuation correlation functions parameters, demonstrating that this anisotropy is an intrinsic property of the water-exposed active site, where countervailing gradients of fast dynamics and disorder in the reactant ground state are maintained near the hydration interface. Our results suggest several plausible factors leading to state-selective rate enhancement and promiscuity in PhENR. This study also highlights a strategy to detect perturbations to vibrational modes outside the transparent window of the mid-IR spectrum, which may be extended to other macromolecular systems.
Collapse
Affiliation(s)
| | - Sunil Basnet
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, Illinois 62901, USA
| | - Hannah H. Lepird
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, Illinois 62901, USA
| | - Blaze W. Rightnowar
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, Illinois 62901, USA
| | - Sean D. Moran
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, Illinois 62901, USA
| |
Collapse
|