1
|
Dan X, Geva E, Batista VS. Simulating Non-Markovian Quantum Dynamics on NISQ Computers Using the Hierarchical Equations of Motion. J Chem Theory Comput 2025; 21:1530-1546. [PMID: 39951672 DOI: 10.1021/acs.jctc.4c01565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2025]
Abstract
Quantum computing offers promising new avenues for tackling the long-standing challenge of simulating the quantum dynamics of complex chemical systems, particularly open quantum systems coupled to external baths. However, simulating such nonunitary dynamics on quantum computers is challenging since quantum circuits are specifically designed to carry out unitary transformations. Furthermore, chemical systems are often strongly coupled to the surrounding environment, rendering the dynamics non-Markovian and beyond the scope of Markovian quantum master equations like Lindblad or Redfield. In this work, we introduce a quantum algorithm designed to simulate non-Markovian dynamics of open quantum systems. Our approach enables the implementation of arbitrary quantum master equations on noisy intermediate-scale quantum (NISQ) computers. We illustrate the method as applied in conjunction with the numerically exact hierarchical equations of motion (HEOM) method. The effectiveness of the resulting quantum HEOM algorithm is demonstrated as applied to simulations of the non-Lindbladian electronic energy and charge transfer dynamics in models of the carotenoid-porphyrin-C60 molecular triad dissolved in tetrahydrofuran and the Fenna-Matthews-Olson complex.
Collapse
Affiliation(s)
- Xiaohan Dan
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
2
|
Preston RJ, Ke Y, Rudge SL, Hertl N, Borrelli R, Maurer RJ, Thoss M. Nonadiabatic Quantum Dynamics of Molecules Scattering from Metal Surfaces. J Chem Theory Comput 2025; 21:1054-1063. [PMID: 39873222 PMCID: PMC11823411 DOI: 10.1021/acs.jctc.4c01586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/30/2025]
Abstract
Nonadiabatic coupling between electrons and molecular motion at metal surfaces leads to energy dissipation and dynamic steering effects during chemical surface dynamics. We present a theoretical approach to the scattering of molecules from metal surfaces that incorporates all nonadiabatic and quantum nuclear effects due to the coupling of the molecular degrees of freedom to the electrons in the metal. This is achieved with the hierarchical equations of motion (HEOM) approach, combined with a matrix product state representation in twin space. The method is applied to the scattering of nitric oxide from Au(111), for which strongly nonadiabatic energy loss during scattering has been experimentally observed, thus presenting a significant theoretical challenge. Since the HEOM approach treats the molecule-surface coupling exactly, it captures the interplay between nonadiabatic and quantum nuclear effects. Finally, the data obtained by the HEOM approach are used as a rigorous benchmark to assess various mixed quantum-classical methods, from which we derive insights into the mechanisms of energy dissipation and the suitable working regimes of each method.
Collapse
Affiliation(s)
- Riley J. Preston
- Institute
of Physics, University of Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany
| | - Yaling Ke
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zürich, Switzerland
| | - Samuel L. Rudge
- Institute
of Physics, University of Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany
| | - Nils Hertl
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
- Department
of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | | | - Reinhard J. Maurer
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
- Department
of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | - Michael Thoss
- Institute
of Physics, University of Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany
| |
Collapse
|
3
|
Lan Z, Liang W. Integrating Self-Initialized Local Thermalizing Lindblad Operators for Variational Quantum Algorithm with Quantum Jump: Implementation and Performance. J Chem Theory Comput 2024; 20:10317-10327. [PMID: 39592402 DOI: 10.1021/acs.jctc.4c00490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Quantum computing holds great potential for simulating quantum systems, such as molecular systems, due to its inherent ability to represent and manipulate quantum states. However, simulating nonunitary dynamics of open quantum systems on a quantum computer is still challenging. Here, we present a scheme denoted as VQS-QJ-LTLME, which adopts the trajectory average of quantum jump Monte Carlo wave function variational evolution to evolve the system's density matrix and local thermalizing Lindblad operators to describe the system-environment interactions. This combination allows the quantum circuit to be initialized after a period of evolution, thereby eliminating the accumulation of errors. The VQS-QJ-LTLME algorithm requires only log2(n) qubits for system size n and holds a time complexity of O ( T n 3 ) , making it particularly suitable for operation on noisy intermediate-scale quantum devices. To accelerate the Monte Carlo sampling process in VQS-QJ-LTLME, we introduce an efficient sampling method, named No-evolution sampling (NES). The VQS-QJ-LTLME aided by NES requires simulating only n3 + 1 trajectories on quantum computers, and then makes 106 to 107 samplings on classical computers in a few seconds. To demonstrate the performance of the VQS-QJ-LTLME algorithm, we simulate the dynamics of a two-level spin-boson model and a four-level reduced Fenna-Matthews-Olson system with real superconducting quantum computers and classical simulators. It is shown that the simulations produced by VQS-QJ-LTLME algorithm align closely with those obtained from the purely classical methods.
Collapse
Affiliation(s)
- Zhihao Lan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, People's Republic of China
| | - WanZhen Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, People's Republic of China
| |
Collapse
|
4
|
Bai S, Zhang S, Huang C, Shi Q. Hierarchical Equations of Motion for Quantum Chemical Dynamics: Recent Methodology Developments and Applications. Acc Chem Res 2024; 57:3151-3160. [PMID: 39381954 DOI: 10.1021/acs.accounts.4c00492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
ConspectusQuantum effects are critical to understanding many chemical dynamical processes in condensed phases, where interactions between molecules and their environment are usually strong and non-Markovian. In this Account, we review recent progress from our group in development and application of the hierarchical equations of motion (HEOM) method, highlighting its ability to address some challenging problems in quantum chemical dynamics.In the HEOM method, the bath degrees of freedom are represented using effective modes from exponential decomposition of the bath correlation function. Complex spectral densities and low temperature simulations often require a larger number of modes, making the simulations very expensive. Recent advances, such as the barycentric spectral decomposition (BSD) technique, can significantly reduce the number of effective modes, allowing to handle complex spectral densities and enabling simulations at very low temperatures, including near-zero temperature dynamics.Another key improvement in the computational efficiency is the use of tensor network methods like matrix product states and hierarchical tensor networks. These techniques allow for efficient HEOM propagation with thousands of effective modes, crucial for simulating large molecular systems interacting with multiple baths. This combination enables simulations of excitation energy transfer (EET) in systems like the Fenna-Matthews-Olson (FMO) complex and even larger systems with experimentally determined spectral densities.The versatility of the HEOM method is demonstrated through applications to a wide range of chemical dynamics problems. Simulations of EET and related ultrafast spectroscopy are first briefly covered. Applications of the HEOM to quantum tunneling effects in proton transfer reactions are then presented. Early works have studied the non-Kramers dependence of the rate constant as a function of bath friction due to deep tunneling and revealed vibrationally nonadiabatic dynamics within the so-called nontraditional view of proton transfer reactions. A recent work on the large kinetic isotope effects in soybean lipoxygenase also indicated that many quantum correction approximations to classical transition-state theory may fall short in describing deep tunneling effects.Charge transport and separation dynamics in organic semiconductors are another area where the HEOM method has been instrumental. We first demonstrate that the HEOM provides a unified description of both band-like and thermally assisted charge carrier transport in organic materials. The effect of non-nearest neighbor transitions is then investigated by combining generalized master equations with exact memory kernels. The HEOM method also enables simulation of charge separation in organic photovoltaics (OPVs) and reveals how factors such as external electric fields, entropy, and charge delocalization influence the charge separation barrier and dynamics.Moreover, HEOM has been applied to investigate hydrogen atom scattering on the Au(111) surface and vibrational energy relaxation at molecule-metal interfaces. These studies provide deeper insights into how electron-hole pair excitations and temporary charge transfer states influence the nuclear motion, offering a new framework for simulating nonadiabatic dynamics on metal surfaces.In summary, the HEOM method has developed into a robust tool for simulating quantum effects in condensed phases. Future developments in algorithm efficiency and computational power will likely expand its applicability to even more complex systems.
Collapse
Affiliation(s)
- Shuming Bai
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuocang Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenghong Huang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Dutta R, Cabral DGA, Lyu N, Vu NP, Wang Y, Allen B, Dan X, Cortiñas RG, Khazaei P, Schäfer M, Albornoz ACCD, Smart SE, Nie S, Devoret MH, Mazziotti DA, Narang P, Wang C, Whitfield JD, Wilson AK, Hendrickson HP, Lidar DA, Pérez-Bernal F, Santos LF, Kais S, Geva E, Batista VS. Simulating Chemistry on Bosonic Quantum Devices. J Chem Theory Comput 2024; 20:6426-6441. [PMID: 39068594 DOI: 10.1021/acs.jctc.4c00544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Bosonic quantum devices offer a novel approach to realize quantum computations, where the quantum two-level system (qubit) is replaced with the quantum (an)harmonic oscillator (qumode) as the fundamental building block of the quantum simulator. The simulation of chemical structure and dynamics can then be achieved by representing or mapping the system Hamiltonians in terms of bosonic operators. In this Perspective, we review recent progress and future potential of using bosonic quantum devices for addressing a wide range of challenging chemical problems, including the calculation of molecular vibronic spectra, the simulation of gas-phase and solution-phase adiabatic and nonadiabatic chemical dynamics, the efficient solution of molecular graph theory problems, and the calculations of electronic structure.
Collapse
Affiliation(s)
- Rishab Dutta
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Delmar G A Cabral
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Ningyi Lyu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Nam P Vu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Department of Chemistry, Lafayette College, Easton, Pennsylvania 18042, United States
| | - Yuchen Wang
- Department of Chemistry, Department of Physics, and Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, United States
| | - Brandon Allen
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Xiaohan Dan
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Rodrigo G Cortiñas
- Department of Applied Physics and Department of Physics, Yale University, New Haven, Connecticut 06520, United States
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, United States
| | - Pouya Khazaei
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Max Schäfer
- Department of Applied Physics and Department of Physics, Yale University, New Haven, Connecticut 06520, United States
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, United States
| | - Alejandro C C D Albornoz
- Department of Applied Physics and Department of Physics, Yale University, New Haven, Connecticut 06520, United States
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, United States
| | - Scott E Smart
- Division of Physical Sciences, College of Letters and Science and Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Scott Nie
- Division of Physical Sciences, College of Letters and Science and Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Michel H Devoret
- Department of Applied Physics and Department of Physics, Yale University, New Haven, Connecticut 06520, United States
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, United States
| | - David A Mazziotti
- Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Prineha Narang
- Division of Physical Sciences, College of Letters and Science and Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Chen Wang
- Department of Physics, University of Massachusetts - Amherst, Amherst, Massachusetts 01003, United States
| | - James D Whitfield
- Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 01003, United States
| | - Angela K Wilson
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| | - Heidi P Hendrickson
- Department of Chemistry, Lafayette College, Easton, Pennsylvania 18042, United States
| | - Daniel A Lidar
- Department of Electrical & Computer Engineering, Department of Chemistry, Department of Physics & Astronomy, and Center for Quantum Information Science & Technology, University of Southern California, Los Angeles, California 90089, United States
| | - Francisco Pérez-Bernal
- Departamento de Ciencias Integradas y Centro de Estudios Avanzados en Física, Matemáticas y Computación, Universidad de Huelva, Huelva 21071, Spain
- Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Granada 18071, Spain
| | - Lea F Santos
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Sabre Kais
- Department of Chemistry, Department of Physics, and Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, United States
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
6
|
Zhang J, Benavides-Riveros CL, Chen L. Artificial-Intelligence-Based Surrogate Solution of Dissipative Quantum Dynamics: Physics-Informed Reconstruction of the Universal Propagator. J Phys Chem Lett 2024; 15:3603-3610. [PMID: 38527271 DOI: 10.1021/acs.jpclett.4c00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The accurate (or even approximate) solution of the equations that govern the dynamics of dissipative quantum systems remains a challenging task in quantum science. While several algorithms have been designed to solve those equations with different degrees of flexibility, they rely mainly on highly expensive iterative schemes. Most recently, deep neural networks have been used for quantum dynamics, but current architectures are highly dependent on the physics of the particular system and usually limited to population dynamics. Here we introduce an artificial-intelligence-based surrogate model that solves dissipative quantum dynamics by parametrizing quantum propagators as Fourier neural operators, which we train using both data set and physics-informed loss functions. Compared with conventional algorithms, our quantum neural propagator avoids time-consuming iterations and provides a universal superoperator that can be used to evolve any initial quantum state for arbitrarily long times. To illustrate the wide applicability of the approach, we employ our quantum neural propagator to compute the population dynamics and time-correlation functions of the Fenna-Matthews-Olson complex.
Collapse
|
7
|
Bi RH, Dou W. Electronic friction near metal surface: Incorporating nuclear quantum effect with ring polymer molecular dynamics. J Chem Phys 2024; 160:074110. [PMID: 38380747 DOI: 10.1063/5.0187646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/25/2024] [Indexed: 02/22/2024] Open
Abstract
The molecular dynamics with electronic friction (MDEF) approach can accurately describe nonadiabatic effects at metal surfaces in the weakly nonadiabatic limit. That being said, the MDEF approach treats nuclear motion classically such that the nuclear quantum effects are completely missing in the approach. To address this limitation, we combine Electronic Friction with Ring Polymer Molecular Dynamics (EF-RPMD). In particular, we apply the averaged electronic friction from the metal surface to the centroid mode of the ring polymer. We benchmark our approach against quantum dynamics to show that EF-RPMD can accurately capture zero-point energy as well as transition dynamics. In addition, we show that EF-RPMD can correctly predict the electronic transfer rate near metal surfaces in the tunneling limit as well as the barrier crossing limit. We expect that our approach will be very useful to study nonadiabatic dynamics near metal surfaces when nuclear quantum effects become essential.
Collapse
Affiliation(s)
- Rui-Hao Bi
- Department of Chemistry, School of Science, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Wenjie Dou
- Department of Chemistry, School of Science, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
- Department of Physics, School of Science, Westlake University, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
8
|
Malpathak S, Ananth N. A Linearized Semiclassical Dynamics Study of the Multiquantum Vibrational Relaxation of NO Scattering from a Au(111) Surface. J Phys Chem Lett 2024; 15:794-801. [PMID: 38232133 DOI: 10.1021/acs.jpclett.3c03041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The vibrational relaxation of NO molecules scattering from a Au(111) surface has served as the focus of efforts to understand nonadiabatic energy transfer at metal-molecule interfaces. Experimental measurements and previous theoretical efforts suggest that multiquantal NO vibrational energy relaxation occurs via electron-hole pair excitations in the metal. Here, using a linearized semiclassical approach, we accurately predict the vibrational relaxation of NO from the νi = 3 state for different incident translational energies. We also accurately capture the central role of transient electron transfer from the metal to the molecule in mediating the vibrational relaxation process but fall short of quantitatively predicting the full extent of multiquantum relaxation for high incident vibrational excitations (νi = 16).
Collapse
Affiliation(s)
- Shreyas Malpathak
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Nandini Ananth
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|