1
|
Bian T, Jiang Y, Cao J, Wu W, Zhang L, Yang Y. Fabrication of piezoelectric/conductive composite nerve conduits for peripheral nerve regeneration. Colloids Surf B Biointerfaces 2025; 250:114544. [PMID: 39983450 DOI: 10.1016/j.colsurfb.2025.114544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/23/2025]
Abstract
Due to the complex regenerative microenvironment after peripheral nerve injury (PNI), developing a piezoelectric/conductive composite nerve guidance conduit (NGC) for repairing nerve defects remains a great challenge. The conductivity and piezoelectricity have been separately demonstrated to enhance the repair of PNI, yet there is a paucity of studies investigating the synergistic effects of both functions. Herein, a piezoelectric/conductive nerve conduit composed of chitosan (CS), reduced graphene oxide (rGO), and poly-L-lactic acid (PLLA) was fabricated, which provided the conductivity, mechanical support and piezoelectricity. Tensile strength, conductivity, antibacterial activity, and cell viability of piezoelectric/conductive composite NGCs were evaluated. Piezoelectric/conductive composite NGCs exhibited electrical signal output capability and conductive performance. Moreover, rGO significantly promoted cell proliferation and adhesion. Overall, the piezoelectric/conductive CS/rGO/PLLA nerve conduit shows great promise as a potential treatment of PNI.
Collapse
Affiliation(s)
- Taotao Bian
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Yuhui Jiang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Jie Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Wenpin Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Luzhong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PR China.
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PR China.
| |
Collapse
|
2
|
Yang C, Zhang Z, Fan X, Liu Y, Deng C, Zhang M, Wang X, Deng L, Gao H, Deng Y, Song Y, Liu H, Wang Z, Xiong W, Wang L. Sericin-Based 3D High-Precision Biomimetic Microscaffold Fabricated by Laser Direct Writing for Tissue Engineering. NANO LETTERS 2025. [PMID: 40238450 DOI: 10.1021/acs.nanolett.5c00346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
In tissue engineering, scaffolds are designed to mimic the extracellular matrix (ECM), creating three-dimensional (3D) microenvironments that support cell adhesion and growth. However, the precise fabrication of heterogenenous ECM-mimicking 3D microstructures remains an unsolved challenge. To address this, high-precise sericin-based scaffolds were developed via femtosecond laser direct writing (FsLDW) technology. Chemically modified sericin served as a monomer in the FsLDW process, achieving nanoscale precision and enabling the fabrication of arbitrary 3D sericin microstructures. Biomimetic 3D models, derived from natural tissue matrices, were employed to construct heterogenenous sericin bioscaffolds. These anisotropic scaffolds effectively supported cell directional growth and differentiation. This advancement greatly enhances the precision of sericin-based tissue-engineered scaffolds, enabling the creation of heterogenenous, multifunctional microenvironments that mimic natural ECM to support functional tissue development and address challenges in accurately simulating ECM microstructures in tissue regeneration.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Clinical Laboratory, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-Disciplinary Translational Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zexu Zhang
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xuhao Fan
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuncheng Liu
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chunsan Deng
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mingduo Zhang
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xinger Wang
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Leimin Deng
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hui Gao
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yan Deng
- Department of Clinical Laboratory, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-Disciplinary Translational Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Song
- Hubei Key Laboratory of Regenerative Medicine and Multi-Disciplinary Translational Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huan Liu
- Department of Clinical Laboratory, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-Disciplinary Translational Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zheng Wang
- Hubei Key Laboratory of Regenerative Medicine and Multi-Disciplinary Translational Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Hubei 430022, China
| | - Wei Xiong
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-Disciplinary Translational Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Hubei 430022, China
| |
Collapse
|
3
|
Wang X, Wang H, Li Y, Yang J, Huang X, Li F, Zhang Y. Bioinspired Paste-Extrusion Printed Microlattices with Natural Bone-Like Porosity and Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2501060. [PMID: 40059599 DOI: 10.1002/smll.202501060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/27/2025] [Indexed: 04/29/2025]
Abstract
The structure feature determines its performance. In the field of biological implants, microlattices are commonly used as building blocks for light-weight and adaptive purposes, which however show limitations in biological and mechanical properties as compared with natural bones. Inspired by the efficient mass transfer and high fault tolerance of biological neural networks derived from the hierarchical structure and functional gradient, a bioinspired paste-extrusion printed microlattice (BPPM) structure is developed and its tunable properties are demonstrated. The mechanical properties of non-crossing microlattice structures are first verified outweigh crossing one under equivalent compressive stress. Then, by introducing gradient components and a paste-extrusion 3D printing process, a BPPM structure with a hierarchical porosity, and gradient composites is fabricated. As a result, the BPPM shows the eliminated deformation along the gradient direction, a fine surface roughness (Sa 3.65-15.67 µm), a wide range of porosity (56-78%) and compressive strength (3.44-22.3 MPa), a favorable permeability (3.02 × 103-3.22 × 103D), and good biocompatibility and promoted cell proliferation. This work not only demonstrates the properties of BPPM in a range of natural bones but also provides a robust way to realize it.
Collapse
Affiliation(s)
- Xianwen Wang
- Shanghai Key Laboratory for High Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haolei Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200241, China
| | - Yetao Li
- Shanghai Key Laboratory for High Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Yang
- School of Mechanical and Automotive Engineering, Shanghai University of Engineering and Science, Shanghai, 201620, China
| | - Xiaolu Huang
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fei Li
- Shanghai Key Laboratory for High Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yaozhong Zhang
- Shanghai Key Laboratory for High Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
4
|
Yu W, Zhou D, Liu F, Li X, Xiao L, Rafique M, Li Z, Rodrigues J, Sheng R, Li Y. Conjugation of PDLA onto MgO microspheres: comparison between solution grafting and melt grafting methods. J Mater Chem B 2025; 13:2674-2681. [PMID: 39840864 DOI: 10.1039/d4tb02692f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Magnesium oxide (MgO) is known for its bioactivity and osteoconductivity when incorporated into biodegradable poly(lactic acid) (PLA), whereas the weak interfacial bonding between MgO microspheres (mMPs) and PLA often leads to suboptimal composite properties with uncontrollable functionality. Conjugation of mMPs with PLA may offer a good way to enhance their compatibility. In this study, we systematically investigated two grafting techniques, solution grafting (Sol) and melt grafting (Mel), to decorate poly (D-lactic acid) (PDLA) on mMPs pre-treated by prioritized hydration to obtain Sol MPs and Mel MPs, in order to optimize the grafting efficiency and improve their controllability in the properties including the crystal structure and surface morphology. Meanwhile, the Sol method showed an improved grafting ratio (2.9 times higher) compared to the Mel method. The conjugation of mMPs with PDLA effectively neutralized the rapid pH increase during the degradation of pure mMPs, which could be used for sustainable delivery of the Mg2+ ions. Moreover, the Sol MPs exhibited the lowest degradation rate constant, which could be well fitted by the first-order dynamic model, suggesting a transformation of the mMP degradation mode from bulk degradation to surface degradation. This change in the biodegradation mode was beneficial for decreasing the over-basic effect caused by the quick degradation of pure mMPs, thus extending their application in the development of PDLA/MgO composites towards tissue engineering or regenerative medicine.
Collapse
Affiliation(s)
- Wenhao Yu
- Engineering Research Centre for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Dong Zhou
- Engineering Research Centre for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Wenzhou Institute of Shanghai University, Wenzhou Key Laboratory of Tissue Regeneration Medical Materials, Wenzhou 325000, China
| | - Fangrui Liu
- Engineering Research Centre for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Xu Li
- Engineering Research Centre for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Lan Xiao
- School of Medicine and Dentistry, Griffith University, Queensland 4222, Australia
| | - Muhammad Rafique
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhiyong Li
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - João Rodrigues
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9000-390, Funchal, Madeira, Portugal
| | - Ruilong Sheng
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9000-390, Funchal, Madeira, Portugal
| | - Yulin Li
- Engineering Research Centre for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Wenzhou Institute of Shanghai University, Wenzhou Key Laboratory of Tissue Regeneration Medical Materials, Wenzhou 325000, China
| |
Collapse
|
5
|
Wan T, Li QC, Zhang FS, Zhang XM, Han N, Zhang PX. Biomimetic ECM nerve guidance conduit with dynamic 3D interconnected porous network and sustained IGF-1 delivery for enhanced peripheral nerve regeneration and immune modulation. Mater Today Bio 2025; 30:101403. [PMID: 39790488 PMCID: PMC11713512 DOI: 10.1016/j.mtbio.2024.101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025] Open
Abstract
Recent advancements in tissue engineering have promoted the development of nerve guidance conduits (NGCs) that significantly enhance peripheral nerve injury treatment, improving outcomes and recovery rates. However, utilising tailored biomimetic three-dimensional (3D) topological porous structures combined with multiple bio-effect neurotrophic factors to create environments similar to neural tissues, regulate local immune responses, and develop a supportive microenvironment to promote peripheral nerve regeneration and repair poses significant challenges. Herein, a biomimetic extracellular matrix (ECM) NGC featuring an interconnected 3D porous network and sustained delivery of insulin-like growth factor-1 (IGF-1) is designed using multi-functional gelatine microcapsules (GMs). Nerve conduits made by blending chitosan (CS) with GMs demonstrate suitable degradation rates, reduced swelling rates, increased suture tensile strength, improved elongation at break, and 50 % radial compression performance that meet clinical application requirements. In vitro cytological studies indicate that biomimetic ECM NGCs exhibit good biocompatibility, promote early survival, proliferation, and remyelination potential of Schwann cells (SCs), and support neurite outgrowth. The biomimetic ECM NGCs comprising a 3D interconnected porous network in a 10-mm sciatic nerve defect rat model sustain IGF-1 delivery, promoting early infiltration of macrophages and polarisation towards M2-type macrophages. Furthermore, observations at 12 weeks post-implantation revealed improvements in electrophysiological performance, alleviation of gastrocnemius muscle atrophy, increased peripheral nerve regeneration, and motor function restoration. Thus, biomimetic ECM NGCs offer a therapeutic strategy for peripheral nerve regeneration with promising clinical applications and transformation prospects to regulate immune microenvironments, promoting SC proliferation and differentiation with nerve axon growth.
Collapse
Affiliation(s)
- Teng Wan
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, 100044, China
- National Centre for Trauma Medicine, Beijing, 100044, China
| | - Qi-Cheng Li
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, 100044, China
- National Centre for Trauma Medicine, Beijing, 100044, China
| | - Feng-Shi Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, 100044, China
- National Centre for Trauma Medicine, Beijing, 100044, China
| | - Xiao-Meng Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, 100044, China
- National Centre for Trauma Medicine, Beijing, 100044, China
| | - Na Han
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, 100044, China
- National Centre for Trauma Medicine, Beijing, 100044, China
| | - Pei-Xun Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, 100044, China
- National Centre for Trauma Medicine, Beijing, 100044, China
- Peking University People's Hospital Qingdao Hospital, Qingdao, 266000, China
| |
Collapse
|