Liu HR, Tang XY, Dai DZ, Dai Y. Ethanol extracts of Rehmannia complex (Di Huang) containing no Corni fructus improve early diabetic nephropathy by combining suppression on the ET-ROS axis with modulate hypoglycemic effect in rats.
JOURNAL OF ETHNOPHARMACOLOGY 2008;
118:466-472. [PMID:
18585879 DOI:
10.1016/j.jep.2008.05.015]
[Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 04/21/2008] [Accepted: 05/16/2008] [Indexed: 05/26/2023]
Abstract
AIM
Liuwei Dihuang (Rehmannia complex, RC) decoction, a classic prescription of Traditional Chinese Medicine (TCM), has been used in treating diabetic nephropathy (DN). Among the 6 crude medicines which contains Corni fructus is recognized as the active fraction for its effectiveness. We aimed to investigate, first, if without Corni fructus a modified RC could be still effective, second, if the ethanol extracts could be better than that of water extract and third, the beneficial effect is mainly stemmed from suppressing the endothelin (ET-1) pathway associated with a moderate hypoglycemic effect.
METHODS AND MATERIALS
Diabetes for 8 weeks was induced by a single dose of streptozotocin (STZ, 65 mg/kg, i.p.) in rats and treated with RC extracts in either 95%, 70% ethanol or water separately during 5-8th week. The efficacy of extracts was compared with aminoguanidine (AMG).
RESULTS
An increase in albumin and creatinine in 24h urine, blood urea nitrogen (BUN) was found in STZ rats. Oxidative stress was found in renal cortex in association with upregulated plasma ET-1 and mRNA of ETA, decreased MMP 2,9 (matrix matelloproteinases) and increased hydroxyproline.
CONCLUSIONS
The RC without Corni fructus was very effective in alleviating DN and ethanol extracts provided greater effects against water extracts. The efficacy in alleviating DN is attributed to normalizing the activated ET system, oxidative stress and MMP 2,9 in combination with a moderate hypoglycemic activity.
Collapse