1
|
Kim KH, Pereira NL. Genetics of Cardiomyopathy: Clinical and Mechanistic Implications for Heart Failure. Korean Circ J 2021; 51:797-836. [PMID: 34327881 PMCID: PMC8484993 DOI: 10.4070/kcj.2021.0154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 11/11/2022] Open
Abstract
Genetic cardiomyopathies are an important cause of sudden cardiac death across all age groups. Genetic testing in heart failure clinics is useful for family screening and providing individual prognostic insight. Obtaining a family history of at least three generations, including the creation of a pedigree, is recommended for all patients with primary cardiomyopathy. Additionally, when appropriate, consultation with a genetic counsellor can aid in the success of a genetic evaluation. Clinical screening should be performed on all first-degree relatives of patients with genetic cardiomyopathy. Genetics has played an important role in the understanding of different cardiomyopathies, and the field of heart failure (HF) genetics is progressing rapidly. Much research has also focused on distinguishing markers of risk in patients with cardiomyopathy using genetic testing. While these efforts currently remain incomplete, new genomic technologies and analytical strategies provide promising opportunities to further explore the genetic architecture of cardiomyopathies, afford insight into the early manifestations of cardiomyopathy, and help define the molecular pathophysiological basis for cardiac remodeling. Cardiovascular physicians should be fully aware of the utility and potential pitfalls of incorporating genetic test results into pre-emptive treatment strategies for patients in the preliminary stages of HF. Future work will need to be directed towards elucidating the biological mechanisms of both rare and common gene variants and environmental determinants of plasticity in the genotype-phenotype relationship. This future research should aim to further our ability to identify, diagnose, and treat disorders that cause HF and sudden cardiac death in young patients, as well as prioritize improving our ability to stratify the risk for these patients prior to the onset of the more severe consequences of their disease.
Collapse
Affiliation(s)
- Kyung Hee Kim
- Division of Cardiology, Incheon Sejong General Hospital, Incheon, Korea.
| | - Naveen L Pereira
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
2
|
Rosenbaum AN, Agre KE, Pereira NL. Genetics of dilated cardiomyopathy: practical implications for heart failure management. Nat Rev Cardiol 2019; 17:286-297. [PMID: 31605094 DOI: 10.1038/s41569-019-0284-0] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2019] [Indexed: 12/19/2022]
Abstract
Given the global burden of heart failure, strategies to understand the underlying cause or to provide prognostic information are critical to reducing the morbidity and mortality associated with this highly prevalent disease. Cardiomyopathies often have a genetic cause, and the field of heart failure genetics is progressing rapidly. Through a deliberate investigation, evaluation for a familial component of cardiomyopathy can lead to increased identification of pathogenic genetic variants. Much research has also been focused on identifying markers of risk in patients with cardiomyopathy with the use of genetic testing. Advances in our understanding of genetic variants have been slightly offset by an increased recognition of the heterogeneity of disease expression. Greater breadth of genetic testing can increase the likelihood of identifying a variant of uncertain significance, which is resolved only rarely by cellular functional validation and segregation analysis. To increase the use of genetics in heart failure clinics, increased availability of genetic counsellors and other providers with experience in genetics is necessary. Ultimately, through ongoing research and increased clinical experience in cardiomyopathy genetics, an improved understanding of the disease processes will facilitate better clinical decision-making about the therapies offered, exemplifying the implementation of precision medicine.
Collapse
Affiliation(s)
| | - Katherine E Agre
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Naveen L Pereira
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA. .,William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA. .,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
3
|
Lee SR, Han J. Mitochondrial Mutations in Cardiac Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:81-111. [PMID: 28551783 DOI: 10.1007/978-3-319-55330-6_5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondria individually encapsulate their own genome, unlike other cellular organelles. Mitochondrial DNA (mtDNA) is a circular, double-stranded, 16,569-base paired DNA containing 37 genes: 13 proteins of the mitochondrial respiratory chain, two ribosomal RNAs (rRNAs; 12S and 16S), and 22 transfer RNAs (tRNAs). The mtDNA is more vulnerable to oxidative modifications compared to nuclear DNA because of its proximity to ROS-producing sites, limited presence of DNA damage repair systems, and continuous replication in the cell. mtDNA mutations can be inherited or sporadic. Simple mtDNA mutations are point mutations, which are frequently found in mitochondrial tRNA loci, causing mischarging of mitochondrial tRNAs or deletion, duplication, or reduction in mtDNA content. Because mtDNA has multiple copies and a specific replication mechanism in cells or tissues, it can be heterogenous, resulting in characteristic phenotypic presentations such as heteroplasmy, genetic drift, and threshold effects. Recent studies have increased the understanding of basic mitochondrial genetics, providing an insight into the correlations between mitochondrial mutations and cardiac manifestations including hypertrophic or dilated cardiomyopathy, arrhythmia, autonomic nervous system dysfunction, heart failure, or sudden cardiac death with a syndromic or non-syndromic phenotype. Clinical manifestations of mitochondrial mutations, which result from structural defects, functional impairment, or both, are increasingly detected but are not clear because of the complex interplay between the mitochondrial and nuclear genomes, even in homoplasmic mitochondrial populations. Additionally, various factors such as individual susceptibility, nutritional state, and exposure to chemicals can influence phenotypic presentation, even for the same mtDNA mutation.In this chapter, we summarize our current understanding of mtDNA mutations and their role in cardiac involvement. In addition, epigenetic modifications of mtDNA are briefly discussed for future elucidation of their critical role in cardiac involvement. Finally, current strategies for dealing with mitochondrial mutations in cardiac disorders are briefly stated.
Collapse
Affiliation(s)
- Sung Ryul Lee
- Department of Integrated Biomedical Science, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan, 47392, South Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Cardiovascular and Metabolic Disease Center, Department of Physiology, College of Medicine, Inje University, Busan, 47392, South Korea.
| |
Collapse
|
4
|
Affiliation(s)
- Valentina Favalli
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital, Policlinico San Matteo, Pavia, Italy
| | - Alessandra Serio
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital, Policlinico San Matteo, Pavia, Italy
| | - Maurizia Grasso
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital, Policlinico San Matteo, Pavia, Italy
| | - Eloisa Arbustini
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital, Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
5
|
Genetic deletion of the mitochondrial phosphate carrier desensitizes the mitochondrial permeability transition pore and causes cardiomyopathy. Cell Death Differ 2014; 21:1209-17. [PMID: 24658400 DOI: 10.1038/cdd.2014.36] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 12/22/2022] Open
Abstract
The mitochondrial phosphate carrier (PiC) is critical for ATP synthesis by serving as the primary means for mitochondrial phosphate import across the inner membrane. In addition to its role in energy production, PiC is hypothesized to have a role in cell death as either a component or a regulator of the mitochondrial permeability transition pore (MPTP) complex. Here, we have generated a mouse model with inducible and cardiac-specific deletion of the Slc25a3 gene (PiC protein). Loss of PiC protein did not prevent MPTP opening, suggesting it is not a direct pore-forming component of this complex. However, Slc25a3 deletion in the heart blunted MPTP opening in response to Ca(2+) challenge and led to a greater Ca(2+) uptake capacity. This desensitization of MPTP opening due to loss or reduction in PiC protein attenuated cardiac ischemic-reperfusion injury, as well as partially protected cells in culture from Ca(2+) overload induced death. Intriguingly, deletion of the Slc25a3 gene from the heart long-term resulted in profound hypertrophy with ventricular dilation and depressed cardiac function, all features that reflect the cardiomyopathy observed in humans with mutations in SLC25A3. Together, these results demonstrate that although the PiC is not a direct component of the MPTP, it can regulate its activity, suggesting a novel therapeutic target for reducing necrotic cell death. In addition, mice lacking Slc25a3 in the heart serve as a novel model of metabolic, mitochondrial-driven cardiomyopathy.
Collapse
|
6
|
Zarrouk Mahjoub S, Mehri S, Ourda F, Finsterer J, Ben Arab S. Novel m.15434C>A (p.230L>I) Mitochondrial Cytb Gene Missense Mutation Associated with Dilated Cardiomyopathy. ISRN CARDIOLOGY 2012; 2012:251723. [PMID: 22811935 PMCID: PMC3395144 DOI: 10.5402/2012/251723] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 05/09/2012] [Indexed: 11/23/2022]
Abstract
Background. Previously it has been shown that various types of hypertrophic and dilative cardiomyopathy (hCMP, dCMP) can be attributed to disturbed mitochondrial oxidative energy metabolism. Several studies described mutations in mitochondrial DNA-located genes encoding for subunits of respiratory chain complexes, including the cytochrome b gene (MT-CYB), causing CMPs. Methods and Results. In the present study the MT-CYB gene was analysed in 30 patients with hCMP, 40 patients with dCMP, and 50 controls for alterations. Altogether, 27 MT-CYB variants were detected. Twenty-four of them were single nucleotide polymorphisms defining common haplogroups. The variant m.15434C>A was found in a single patient with severe dCMP and assessed as novel mutation, since it was not found in healthy controls or available data sets, and was nonhaplogroup associated with Phylotree. This variant altered an amino acid (L230I) with a high interspecific amino acid conservation index (CI = 97.7%) indicative of the functional importance of the residue. Conclusions. Though the L230I mutation seems to play a causative role for dCMP, prospective studies on yeast or transgenic mice models with defined mutation are warranted to study the pathogenetic impact of this mutation.
Collapse
Affiliation(s)
- Sinda Zarrouk Mahjoub
- Genetics Laboratory and Research Unit of Genetics Epidemiology and Molecular, Faculty of Medicine of Tunis, Tunis 1007, Tunisia
| | | | | | | | | |
Collapse
|
7
|
Mitochondrial cardiomyopathies: how to identify candidate pathogenic mutations by mitochondrial DNA sequencing, MITOMASTER and phylogeny. Eur J Hum Genet 2010; 19:200-7. [PMID: 20978534 PMCID: PMC3025796 DOI: 10.1038/ejhg.2010.169] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Pathogenic mitochondrial DNA (mtDNA) mutations leading to mitochondrial dysfunction can cause cardiomyopathy and heart failure. Owing to a high mutation rate, mtDNA defects may occur at any nucleotide in its 16 569 bp sequence. Complete mtDNA sequencing may detect pathogenic mutations, which can be difficult to interpret because of normal ethnic/geographic-associated haplogroup variation. Our goal is to show how to identify candidate mtDNA mutations by sorting out polymorphisms using readily available online tools. The purpose of this approach is to help investigators in prioritizing mtDNA variants for functional analysis to establish pathogenicity. We analyzed complete mtDNA sequences from 29 Italian patients with mitochondrial cardiomyopathy or suspected disease. Using MITOMASTER and PhyloTree, we characterized 593 substitution variants by haplogroup and allele frequencies to identify all novel, non-haplogroup-associated variants. MITOMASTER permitted determination of each variant's location, amino acid change and evolutionary conservation. We found that 98% of variants were common or rare, haplogroup-associated variants, and thus unlikely to be primary cause in 80% of cases. Six variants were novel, non-haplogroup variants and thus possible contributors to disease etiology. Two with the greatest pathogenic potential were heteroplasmic, nonsynonymous variants: m.15132T>C in MT-CYB for a patient with hypertrophic dilated cardiomyopathy and m.6570G>T in MT-CO1 for a patient with myopathy. In summary, we have used our automated information system, MITOMASTER, to make a preliminary distinction between normal mtDNA variation and pathogenic mutations in patient samples; this fast and easy approach allowed us to select the variants for traditional analysis to establish pathogenicity.
Collapse
|
8
|
Abstract
Cardiac myocytes die through apoptosis, oncosis, and autophagy. Apoptosis affects single cells and is morphologically characterized by nuclear fragmentation with generation of apoptotic bodies that can be seen either within dying cells or free in the interstitial spaces. Dead myocytes are removed by macrophages through phagocytosis without triggering inflammation. The circulating markers of myocyte necrosis are not increased by apoptosis. The morphologic changes of the induction and early execution phases are seen at electron microscopy while late fragmentation is visible on both light and electron microscopy. Immunoelectron microscopy provides combined functional and structural information showing cytochrome c immuno-labelling release from mitochondria, TUNEL labelling of apoptotic nuclei, annexin V translocation in the outer plasma cell layer. Oncosis is characterized by specific morphologic features that may coexist with apoptosis, especially in ischemic myocardium. Autophagy is a defense process that is associated with significant myocardial damage and necrosis when removal of the lysosomal content is impaired. Morphological features of apoptosis, oncosis, and autophagocytosis may coexist at the same time. Although dead myocytes showing characteristics of autophagy and apoptosis are rarely observed in human decompensated hearts, autophagic vacuoles, and early apoptotic changes may be seen more often in morphologically viable myocytes. Such features may occur in failing hearts of both ischemic and non-ischemic etiology. The shared mode of cardiac myocyte death in failing human hearts of different etiologies suggests that preservation of myocyte integrity may be possible by similar therapeutic strategies.
Collapse
|
9
|
Werner P, Raducha MG, Prociuk U, Sleeper MM, Van Winkle TJ, Henthorn PS. A novel locus for dilated cardiomyopathy maps to canine chromosome 8. Genomics 2008; 91:517-21. [PMID: 18442891 DOI: 10.1016/j.ygeno.2008.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 03/07/2008] [Accepted: 03/12/2008] [Indexed: 11/26/2022]
Abstract
Dilated cardiomyopathy (DCM), the most common form of cardiomyopathy, often leads to heart failure and sudden death. While a substantial proportion of DCMs are inherited, mutations responsible for the majority of DCMs remain unidentified. A genome-wide linkage study was performed to identify the locus responsible for an autosomal recessive inherited form of juvenile DCM (JDCM) in Portuguese water dogs using 16 families segregating the disease. Results link the JDCM locus to canine chromosome 8 with two-point and multipoint lod scores of 10.8 and 14, respectively. The locus maps to a 3.9-Mb region, with complete syntenic homology to human chromosome 14, that contains no genes or loci known to be involved in the development of any type of cardiomyopathy. This discovery of a DCM locus with a previously unknown etiology will provide a new gene to examine in human DCM patients and a model for testing therapeutic approaches for heart failure.
Collapse
Affiliation(s)
- Petra Werner
- Section of Medical Genetics, Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-6010, USA.
| | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Abstract
Cardiomyopathies are primary disorders of cardiac muscle associated with abnormalities of cardiac wall thickness, chamber size, contraction, relaxation, conduction, and rhythm. They are a major cause of morbidity and mortality at all ages and, like acquired forms of cardiovascular disease, often result in heart failure. Over the past two decades, molecular genetic studies of humans and analyses of model organisms have made remarkable progress in defining the pathogenesis of cardiomyopathies. Hypertrophic cardiomyopathy can result from mutations in 11 genes that encode sarcomere proteins, and dilated cardiomyopathy is caused by mutations at 25 chromosome loci where genes encoding contractile, cytoskeletal, and calcium regulatory proteins have been identified. Causes of cardiomyopathies associated with clinically important cardiac arrhythmias have also been discovered: Mutations in cardiac metabolic genes cause hypertrophy in association with ventricular pre-excitation and mutations causing arrhythmogenic right ventricular dysplasia were recently discovered in protein constituents of desmosomes. This considerable genetic heterogeneity suggests that there are multiple pathways that lead to changes in heart structure and function. Defects in myocyte force generation, force transmission, and calcium homeostasis have emerged as particularly critical signals driving these pathologies. Delineation of the cell and molecular events triggered by cardiomyopathy gene mutations provide new fundamental knowledge about myocyte biology and organ physiology that accounts for cardiac remodeling and defines mechanistic pathways that lead to heart failure.
Collapse
Affiliation(s)
- Ferhaan Ahmad
- Cardiovascular Institute and Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
12
|
Affiliation(s)
- G P Taylor
- Department of Pathology, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
13
|
Wang Y, Fang J, Leonard SS, Rao KMK. Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Radic Biol Med 2004; 36:1434-43. [PMID: 15135180 DOI: 10.1016/j.freeradbiomed.2004.03.010] [Citation(s) in RCA: 493] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 03/01/2004] [Accepted: 03/11/2004] [Indexed: 10/26/2022]
Abstract
Recent research indicates that cadmium (Cd) induces oxidative damage in cells; however, the mechanism of the oxidative stress induced by this metal is unclear. We investigated the effects of Cd on the individual complexes of the electron transfer chain (ETC) and on the stimulation of reactive oxygen species (ROS) production in mitochondria. The activity of complexes II (succinate:ubiquinone oxidoreductase) and III (ubiquinol:cytochrome c oxidoreductase) of mitochondrial ETC from liver, brain, and heart showed greater inhibition by Cd than the other complexes. Cd stimulated ROS production in the mitochondria of all three tissues mentioned above. The effect of various electron donors (NADH, succinate, and 2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinol) on ROS production was tested separately in the presence and in the absence of Cd. ESR showed that complex III might be the only site of ROS production induced by Cd. The results of kinetic studies and electron turnover experiments suggest that Cd may bind between semiubiquinone and cytochrome b566 of the Q0 site of cytochrome b of complex III, resulting in accumulation of semiubiquinones at the Q0 site. The semiubiquinones, being unstable, are prone to transfer one electron to molecular oxygen to form superoxide, providing a possible mechanism for Cd-induced generation of ROS in mitochondria.
Collapse
Affiliation(s)
- Yudong Wang
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA.
| | | | | | | |
Collapse
|
14
|
|
15
|
Tawakol A, Sims K, MacRae C, Friedman JR, Alpert NM, Fischman AJ, Gewirtz H. Myocardial flow regulation in people with mitochondrial myopathy, encephalopathy, lactic acidosis, stroke-like episodes/myoclonic epilepsy and ragged red fibers and other mitochondrial syndromes. Coron Artery Dis 2003; 14:197-205. [PMID: 12702922 DOI: 10.1097/01.mca.0000065743.52558.51] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE This study tests the hypothesis that elevated levels of rest myocardial blood flow (MBF), indicative of inefficient aerobic metabolism, will be present in some patients with mitochondrial disorders but structurally normal hearts. BACKGROUND Regulation of MBF is a complex process closely linked to myocardial energy production. Aerobic metabolism in turn depends on normal mitochondrial function and so investigation of patients with mitochondrial disorders may provide important information regarding heritable mechanisms involved in regulation of myocardial flow. METHODS Rest and adenosine-stimulated MBF was measured by the positron emission tomography (PET) 13NH(3) technique in nine patients with mitochondrial disorders and compared with 15 age-matched control participants. RESULTS Basal heart rate (beats/min) and rate pressure product (mm Hg/min) were elevated in patients (76+/-13 and 9302+/-1910, mean+/-SD, respectively) compared with control participants (63+/-9 and 7411+/-1531, P<0.01 and P<0.05, respectively). However, rest and adenosine-stimulated MBF (ml/min per g) did not differ significantly between groups (patients, 1.13+/-0.52 and 4.17+/-0.84, respectively; control participants, 0.85+/-0.30 and 3.56+/-0.63, respectively). Normalization of rest MBF to rate pressure product, however, demonstrated three patients whose values exceeded that of all control participants (chi2=5.71, P<0.05, Fisher's exact test). CONCLUSIONS Elevated basal MBF, in some patients with mitochondrial disorders but structurally normal hearts, suggests the level of basal flow is responsive to efficiency of aerobic metabolism, which closely reflects mitochondrial function. Mitochondrial heteroplasmy with relative sparing of myocardial mitochondria may account for normal basal flow in others with these disorders.
Collapse
Affiliation(s)
- Ahmed Tawakol
- Cardiac Unit, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|