1
|
Chang Q, Li Q, Deng YH, Sun TY, Wu YD, Wang L. Nickel catalyzed C-N coupling of haloarenes with B 2N 4 reagents. Nat Commun 2025; 16:3202. [PMID: 40180918 PMCID: PMC11968942 DOI: 10.1038/s41467-025-58438-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 03/20/2025] [Indexed: 04/05/2025] Open
Abstract
Carbon-heteroatom bond (especially for C-N bond) formation through nickel catalysis has seen significant development. Well-established Ni(0)/Ni(II) redox cycle and photoinduced Ni(I)/Ni(III) redox cycle have been the dominant mechanisms. We report a thermally driven Ni-catalyzed method for C-N bond formation between haloarenes and B2N4 reagents, yielding N,N-dialkylaniline derivatives in good to excellent yields with broad functional group tolerance under base-free conditions. The catalytic protocol is useful for base-sensitive structures and late-stage modifications of complex molecules. Detailed mechanistic studies and density functional theory (DFT) calculations indicate that a Ni(I)/Ni(III) redox cycle is preferred in the C-N coupling process, and B2N4 reagent serves both as a single electron transfer donor and a N,N-dialkylation source.
Collapse
Affiliation(s)
- Qianqian Chang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, P. R. China
| | - Qini Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, P. R. China
| | - Yi-Hui Deng
- Key Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, P. R. China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Tian-Yu Sun
- Key Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, P. R. China.
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China.
| | - Yun-Dong Wu
- Key Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, P. R. China.
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China.
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| | - Leifeng Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, P. R. China.
| |
Collapse
|
2
|
Sivarajan C, Saha S, Mulla S, Mitra R. NaNH 2 as a Nitrogen Source and Base to Synthesize Triarylamines from Aryl Halides Using Pd-Catalyzed C-N Coupling. J Org Chem 2024; 89:17021-17030. [PMID: 39529372 DOI: 10.1021/acs.joc.4c00887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Triarylamines (TAAs) are excellent core structures for multifunctional materials. Reversible single-electron oxidation is the key to versatile applications. Synthesizing these from feedstock materials is inevitable. Here, we report the one-pot synthesis of TAAs from aryl halides and inexpensive NaNH2 as a nitrogen source and base (dual role). The Pd/Xantphos catalytic system shows excellent selectivity toward TAAs from aryl bromides without adding organic amines and an additional base. Various para substituents on the aryl ring show good functional group tolerance in the presence of NaNH2, resulting in moderate to excellent yield (20-91%). Even though the meta-substituted aryl bromides give TAA products in moderate to excellent yields (20-81%), the ortho substitution leads to only diarylamine products. TAAs from aryl chlorides can be achieved only by changing the ligand to Xphos. The mechanistic investigation suggests that three sequential C-N cross-coupling reactions give the TAA products in the presence of NaNH2. The photophysical and electrochemical properties of TAAs and corresponding radicals were tunable based on substitution patterns.
Collapse
Affiliation(s)
- Chinraj Sivarajan
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Ponda, Goa 403401, India
| | - Shriya Saha
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Ponda, Goa 403401, India
| | - Suhel Mulla
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Ponda, Goa 403401, India
| | - Raja Mitra
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Ponda, Goa 403401, India
| |
Collapse
|
3
|
Gardner KE, de Lescure L, Hardy MA, Tan J, Sigman MS, Paton RS, Sarpong R. Modular synthesis of aryl amines from 3-alkynyl-2-pyrones. Chem Sci 2024; 15:d4sc04885g. [PMID: 39246374 PMCID: PMC11375436 DOI: 10.1039/d4sc04885g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024] Open
Abstract
The synthesis of aryl amines from 3-alkynyl-2-pyrones and various amines is described. Mechanistically, the aryl amines are proposed to arise from the 3-alkynyl-2-pyrone substrates through their selective opening in a 1,6-fashion by secondary amines followed by decarboxylation and an unexpected rearrangement. The proposed mechanism is supported by quantum chemical transition-state calculations, which are consistent with the regiochemical outcome. The scope of this transformation spans a variety of 3-alkynyl-2-pyrones and a range of secondary amines. The influence of the secondary amine coupling partners on reaction efficiency was elucidated through data-driven modeling as well as scope exploration. These latter studies revealed that the steric bulk of the secondary amine coupling partner under the reaction conditions serves as a strong indicator of overall reaction efficiency.
Collapse
Affiliation(s)
- Kristen E Gardner
- Department of Chemistry, University of California Berkeley CA USA 94708
| | - Louis de Lescure
- Department of Chemistry, Colorado State University Fort Collins CO 80523 USA
| | - Melissa A Hardy
- Department of Chemistry, University of Utah Salt Lake City Utah 84112 USA
| | - Jin Tan
- Department of Chemistry, University of California Berkeley CA USA 94708
| | - Matthew S Sigman
- Department of Chemistry, University of Utah Salt Lake City Utah 84112 USA
| | - Robert S Paton
- Department of Chemistry, Colorado State University Fort Collins CO 80523 USA
| | - Richmond Sarpong
- Department of Chemistry, University of California Berkeley CA USA 94708
| |
Collapse
|
4
|
Choi K, Brunn JN, Borate K, Kaduskar R, Lizandara Pueyo C, Shinde H, Goetz R, Hartwig JF. Palladium-Catalyzed Amination of Aryl Halides with Aqueous Ammonia and Hydroxide Base Enabled by Ligand Development. J Am Chem Soc 2024; 146:19414-19424. [PMID: 38968576 PMCID: PMC11620754 DOI: 10.1021/jacs.4c05768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
The conversion of aryl halides to primary arylamines with a convenient and inexpensive source of ammonia has been a long-standing synthetic challenge. Aqueous ammonia would be the most convenient and least expensive form of ammonia, but such a palladium-catalyzed amination reaction with a high concentration of water faces challenges concerning catalyst stability and competing hydroxylation, and palladium-catalyzed reactions with this practical reagent are rare. Further, most reactions with ammonia to form primary amines are conducted with tert-butoxide base, but reactions with ammonium hydroxide would contain hydroxide as base. Thus, ammonia surrogates, ammonia in organic solvents, and ammonium salts have been used under anhydrous conditions instead with varying levels of selectivity for the primary amine. We report the palladium-catalyzed amination of aryl and heteroaryl chlorides and bromides with aqueous ammonia and a hydroxide base to form the primary arylamine with high selectivity. The palladium catalyst containing a new dialkyl biheteroaryl phosphine ligand (KPhos) suppresses both the formation of aryl alcohol and diarylamine side products. Mechanistic studies with a soluble hydroxide base revealed turnover-limiting reductive elimination of the arylamine and an equilibrium between arylpalladium amido and hydroxo complexes prior to the turnover-limiting step.
Collapse
Affiliation(s)
- Kyoungmin Choi
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - John N Brunn
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Kailaskumar Borate
- BASF Chemicals India Pvt. Ltd., Thane Belapur Road, Turbhe, Navi Mumbai 400705, India
| | - Rahul Kaduskar
- BASF Chemicals India Pvt. Ltd., Thane Belapur Road, Turbhe, Navi Mumbai 400705, India
| | | | - Harish Shinde
- BASF Chemicals India Pvt. Ltd., Thane Belapur Road, Turbhe, Navi Mumbai 400705, India
| | - Roland Goetz
- BASF SE, Carl-Bosch-Strasse 38, Ludwigshafen 67056, Germany
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
5
|
Kharlamova AD, Ermakova EV, Abel AS, Gontcharenko VE, Cheprakov AV, Averin AD, Beletskaya IP, Andraud C, Bretonnière Y, Bessmertnykh-Lemeune A. Quinoxaline-based azamacrocycles: synthesis, AIE behavior and acidochromism. Org Biomol Chem 2024; 22:5181-5192. [PMID: 38864283 DOI: 10.1039/d4ob00558a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The development of luminescent molecular materials has advanced rapidly in recent decades, primarily driven by the synthesis of novel emissive compounds and a deeper understanding of excited-state mechanisms. Herein, we report a streamlined synthetic approach to light-emitting diazapolyoxa- and polyazamacrocycles N2CnOxQ and NyCnQ (n = 3-10; x = 2, 3; y = 2-5), incorporating a 2,3-diphenylquinoxaline residue (DPQ). This synthetic strategy based on macrocyclization through Pd-catalyzed amination reaction yields the target macrocycles in good or high yields (46-92%), enabling precise control over their structural parameters. A key role of the PhPF-tBu ligand belonging to the JosiPhos series in this macrocyclization was elucidated through DFT computation. This macrocyclization reaction eliminates the need for complex protecting-deprotecting procedures of secondary amine groups, offering a convenient and scalable method for the preparation of target compounds. Moreover, it boasts a potentially broad substrate scope, making it promising for structure-properties studies within photophysics, sensor development, and material synthesis. Photophysical properties of representative macrocycles were investigated, employing spectroscopic techniques and DFT computation. It was demonstrated that DPQ-containing macrocycles display aggregation-induced emission in a DCM-hexane solvent mixture despite the presence of flexible tethers within their structures. Single-crystal X-ray diffraction analysis of a representative compound N2C8O3Q allowed us to gain deeper insight into its molecular structure and AIE behaviour. The emissive aggregates of the N2C10O3Q macrocycle were immobilized on filter paper yielding AIE-exhibiting test strips for measuring acidity in vapors and in aqueous media.
Collapse
Affiliation(s)
- Alisa D Kharlamova
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory, 1-3, Moscow 119991, Russia.
| | - Elizaveta V Ermakova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31, Moscow 119071, Russia
| | - Anton S Abel
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory, 1-3, Moscow 119991, Russia.
| | - Victoria E Gontcharenko
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory, 1-3, Moscow 119991, Russia.
- Lebedev Physical Institute, Russian Academy of Sciences, Leninsky Pr. 53, Moscow, 119071, Russia
| | - Andrei V Cheprakov
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory, 1-3, Moscow 119991, Russia.
| | - Alexei D Averin
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory, 1-3, Moscow 119991, Russia.
| | - Irina P Beletskaya
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory, 1-3, Moscow 119991, Russia.
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31, Moscow 119071, Russia
| | - Chantal Andraud
- Université de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 46 allée d'Italie, 69342 Lyon, France.
| | - Yann Bretonnière
- Université de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 46 allée d'Italie, 69342 Lyon, France.
| | - Alla Bessmertnykh-Lemeune
- Université de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 46 allée d'Italie, 69342 Lyon, France.
| |
Collapse
|
6
|
Gribanov PS, Philippova AN, Topchiy MA, Lypenko DA, Dmitriev AV, Tokarev SD, Smol’yakov AF, Rodionov AN, Asachenko AF, Osipov SN. Synthesis of 5-(Aryl)amino-1,2,3-triazole-containing 2,1,3-Benzothiadiazoles via Azide-Nitrile Cycloaddition Followed by Buchwald-Hartwig Reaction. Molecules 2024; 29:2151. [PMID: 38731642 PMCID: PMC11085325 DOI: 10.3390/molecules29092151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024] Open
Abstract
An efficient access to the novel 5-(aryl)amino-1,2,3-triazole-containing 2,1,3-benzothiadiazole derivatives has been developed. The method is based on 1,3-dipolar azide-nitrile cycloaddition followed by Buchwald-Hartwig cross-coupling to afford the corresponding N-aryl and N,N-diaryl substituted 5-amino-1,2,3-triazolyl 2,1,3-benzothiadiazoles under NHC-Pd catalysis. The one-pot diarylative Pd-catalyzed heterocyclization opens the straightforward route to triazole-linked carbazole-benzothiadiazole D-A systems. The optical and electrochemical properties of the compound obtained were investigated to estimate their potential application as emissive layers in OLED devises. The quantum yield of photoluminescence (PLQY) of the synthesized D-A derivatives depends to a large extent on electron-donating strengths of donor (D) component, reaching in some cases the values closed to 100%. Based on the most photoactive derivative and wide bandgap host material mCP, a light-emitting layer of OLED was made. The device showed a maximum brightness of 8000 cd/m2 at an applied voltage of 18 V. The maximum current efficiency of the device reaches a value of 3.29 cd/A.
Collapse
Affiliation(s)
- Pavel S. Gribanov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28/1 Vavilova Str., 119334 Moscow, Russia; (A.N.P.); (S.D.T.); (A.F.S.); (A.N.R.)
| | - Anna N. Philippova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28/1 Vavilova Str., 119334 Moscow, Russia; (A.N.P.); (S.D.T.); (A.F.S.); (A.N.R.)
| | - Maxim A. Topchiy
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskiy Prospect 29, 119991 Moscow, Russia; (M.A.T.); (A.F.A.)
| | - Dmitry A. Lypenko
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Prospect 31, Bld. 4, 119071 Moscow, Russia; (D.A.L.); (A.V.D.)
| | - Artem V. Dmitriev
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Prospect 31, Bld. 4, 119071 Moscow, Russia; (D.A.L.); (A.V.D.)
| | - Sergey D. Tokarev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28/1 Vavilova Str., 119334 Moscow, Russia; (A.N.P.); (S.D.T.); (A.F.S.); (A.N.R.)
| | - Alexander F. Smol’yakov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28/1 Vavilova Str., 119334 Moscow, Russia; (A.N.P.); (S.D.T.); (A.F.S.); (A.N.R.)
| | - Alexey N. Rodionov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28/1 Vavilova Str., 119334 Moscow, Russia; (A.N.P.); (S.D.T.); (A.F.S.); (A.N.R.)
| | - Andrey F. Asachenko
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskiy Prospect 29, 119991 Moscow, Russia; (M.A.T.); (A.F.A.)
| | - Sergey N. Osipov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28/1 Vavilova Str., 119334 Moscow, Russia; (A.N.P.); (S.D.T.); (A.F.S.); (A.N.R.)
| |
Collapse
|
7
|
Guo D, Rajeshkumar T, Zhu S, Yuan Q, Hong D, Zhou S, Zhu X, Maron L, Wang S. Aryl C-H bond functionalization with diphenyldiazomethane induced by rare-earth metal alkyl complexes. Dalton Trans 2023; 52:11315-11324. [PMID: 37530174 DOI: 10.1039/d3dt01714a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The first examples of regioselective aryl ortho-C-H functionalization with diphenyldiazomethane for the construction of Caryl-Nhydrazinato bonds were accomplished via the activation of C-H bonds and the subsequent reaction of diphenyldiazomethane with the RE-Caryl bond. The reactions of rare-earth metal monoalkyl complexes LRE(CH2SiMe3)(THF)2 (L = 2,5-[(2-pyrrolyl)CPh2]2(N-Me-pyrrole)) supported by a neutral N-methylpyrrole anchored dipyrrolyl ligand with 2 equiv. of Ph2CN2 gave irreversibly unprecedented hydrazonato-functionalized imino rare-earth metal complexes LRE(Ph2CNNC6H4-(o-CNHPh) (RE = Y (2a), Lu (2a')) in good yields involving a rather complex process including the interaction of a diazo unit with a RE-Calkyl bond, a β-H elimination, a N-N cleavage, 1,4-hydrogen transfer and the subsequent C-N coupling with another diphenyldiazomethane. More important is that regioselective aryl C-H bond functionalization with diphenyldiazomethane to construct the Caryl-Nhydrazinato bonds can be easily achieved by three-component reactions of rare-earth metal monoalkyl complexes, a wide range of substituted imines (including aldimines, ketimines or analogous 2-phenylpyridine) and diphenyldiazomethane, affording various hydrazonato-functionalized phenyl, thienyl imino or pyridyl rare-earth metal complexes 2b-2j at room temperature. A further study indicated that the substituents on the phenyl ring have a great effect on the reaction pathway and governed the Caryl-Nhydrazinato bond construction. Moreover, the experimental studies show that the formation of the Caryl-Nhydrazinato bonds is thermodynamically facile, which could be realized at room temperature easily.
Collapse
Affiliation(s)
- Dianjun Guo
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China.
| | - Thayalan Rajeshkumar
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France.
| | - Shan Zhu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China.
| | - Qingbing Yuan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China.
| | - Dongjing Hong
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China.
| | - Shuangliu Zhou
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China.
| | - Xiancui Zhu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China.
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France.
| | - Shaowu Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China.
- Anhui Laboratory of Clean Catalytic Engineering, Anhui Laboratory of Functional Complexes for Materials Chemistry and Application, College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| |
Collapse
|
8
|
Kuliukhina DS, Yakushev AA, Malysheva AS, Averin AD, Beletskaya IP. Synthesis of N,N′-Diaryl Diamines and Oxadiamines via Chan–Lam Amination. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s107042802212003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
9
|
Copper-Catalyzed Reactions of Aryl Halides with N-nucleophiles and Their Possible Application for Degradation of Halogenated Aromatic Contaminants. Catalysts 2022. [DOI: 10.3390/catal12080911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This review summarizes recent applications of copper or copper-based compounds as a nonprecious metal catalyst in N-nucleophiles-based dehalogenation (DH) reactions of halogenated aromatic compounds (Ar-Xs). Cu-catalyzed DH enables the production of corresponding nonhalogenated aromatic products (Ar-Nu), which are much more biodegradable and can be mineralized during aerobic wastewater treatment or which are principally further applicable. Based on available knowledge, the developed Cu-based DH methods enable the utilization of amines for effective cleavage of aryl-halogen bonds in organic solvents or even in an aqueous solution.
Collapse
|
10
|
Chernyshev VM, Khazipov OV, Shevchenko MA, Pasyukov DV, Burykina JV, Minyaev ME, Eremin DB, Ananikov VP. Discovery of the N–NHC Coupling Process under the Conditions of Pd/NHC- and Ni/NHC-Catalyzed Buchwald–Hartwig Amination. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Victor M. Chernyshev
- Platov South-Russian State Polytechnic University (NPI), Prosveschenya 132, Novocherkassk 346428, Russia
| | - Oleg V. Khazipov
- Platov South-Russian State Polytechnic University (NPI), Prosveschenya 132, Novocherkassk 346428, Russia
| | - Maksim A. Shevchenko
- Platov South-Russian State Polytechnic University (NPI), Prosveschenya 132, Novocherkassk 346428, Russia
| | - Dmitry V. Pasyukov
- Platov South-Russian State Polytechnic University (NPI), Prosveschenya 132, Novocherkassk 346428, Russia
| | - Julia V. Burykina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| | - Mikhail E. Minyaev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| | - Dmitry B. Eremin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| | - Valentine P. Ananikov
- Platov South-Russian State Polytechnic University (NPI), Prosveschenya 132, Novocherkassk 346428, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| |
Collapse
|
11
|
Kuliukhina DS, Averin AD, Panchenko SP, Abel AS, Savelyev EN, Orlinson BS, Novakov IA, Correia CRD, Beletskaya IP. CuI and Copper Nanoparticles in the Catalytic Amination of 2-Halopyridines. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Murashkina AV, Averin AD, Panchenko SP, Abel AS, Maloshitskaya OA, Savelyev EN, Orlinson BS, Novakov IA, Correia CRD, Beletskaya IP. Comparison of the Catalytic Activities of Copper(I) Iodide and Copper Nanoparticles in the N-Arylation of Adamantane-Containing Amines. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s107042802201002x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Astakhov AV, Chernenko AY, Kutyrev VV, Ranny GS, Minyaev ME, Chernyshev VM, Ananikov VP. Selective Buchwald–Hartwig arylation of C-amino-1,2,4-triazoles and other coordinating aminoheterocycles enabled by bulky NHC ligands and TPEDO activator. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01832b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A facile method for selective N-(hetero)arylation of coordinating 3(5)-amino-1,2,4-triazoles under Pd/NHC catalysis using TPEDO as a new efficient Pd(ii) to Pd(0) reductant has been developed.
Collapse
Affiliation(s)
- Alexander V. Astakhov
- Platov South-Russian State Polytechnic University, (NPI), Prosvescheniya st., 132, Novocherkassk, 346428, Russia
| | - Andrey Yu. Chernenko
- Platov South-Russian State Polytechnic University, (NPI), Prosvescheniya st., 132, Novocherkassk, 346428, Russia
| | - Vadim V. Kutyrev
- Platov South-Russian State Polytechnic University, (NPI), Prosvescheniya st., 132, Novocherkassk, 346428, Russia
| | - Gleb S. Ranny
- Platov South-Russian State Polytechnic University, (NPI), Prosvescheniya st., 132, Novocherkassk, 346428, Russia
| | - Mikhail E. Minyaev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Victor M. Chernyshev
- Platov South-Russian State Polytechnic University, (NPI), Prosvescheniya st., 132, Novocherkassk, 346428, Russia
| | - Valentine P. Ananikov
- Platov South-Russian State Polytechnic University, (NPI), Prosvescheniya st., 132, Novocherkassk, 346428, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| |
Collapse
|