1
|
Pandit NT, Kamble SB. The Petasis Reaction: Applications and Organic Synthesis-A Comprehensive Review. Top Curr Chem (Cham) 2025; 383:7. [PMID: 39856385 DOI: 10.1007/s41061-025-00491-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
The Petasis reaction has introduced significant advancements through the use of various catalysts, solvents, methodologies, and substrates in diverse areas of chemistry, including medicinal, organic, combinatorial, biochemical, and heterocyclic chemistry. It is a prominent method for synthesizing compounds such as α-amino acids, β-amino alcohols, Aza-beta-lactams, alkylaminophenols, α-arylglycines, 2H-chromenes, aminophenols, and hydrazide alcohols. With the increasing demand for medicines, drugs, industrial products, insecticides, and pesticides, the Petasis reaction has become an indispensable and versatile tool. This review explores the range of reaction components, key mechanisms, and reaction conditions associated with the Petasis reaction. Additionally, the paper delves into the potential future directions of this reaction and highlights its various applications.
Collapse
Affiliation(s)
- Nilesh T Pandit
- Department of Chemistry, Yashavantrao Chavan Institute of Science, Lead College, Karmaveer Bhaurao Patil University, Satara, Maharashtra, 415001, India
| | - Santosh B Kamble
- Department of Chemistry, Yashavantrao Chavan Institute of Science, Lead College, Karmaveer Bhaurao Patil University, Satara, Maharashtra, 415001, India.
| |
Collapse
|
2
|
Saeed S, Munawar S, Ahmad S, Mansha A, Zahoor AF, Irfan A, Irfan A, Kotwica-Mojzych K, Soroka M, Głowacka M, Mojzych M. Recent Trends in the Petasis Reaction: A Review of Novel Catalytic Synthetic Approaches with Applications of the Petasis Reaction. Molecules 2023; 28:8032. [PMID: 38138522 PMCID: PMC10745964 DOI: 10.3390/molecules28248032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The Petasis reaction, also called the Petasis Borono-Mannich reaction, is a multicomponent reaction that couples a carbonyl derivative, an amine and boronic acids to yield substituted amines. The reaction proceeds efficiently in the presence or absence of a specific catalyst and solvent. By employing this reaction, a diverse range of chiral derivatives can easily be obtained, including α-amino acids. A broad substrate scope, high yields, distinct functional group tolerance and the availability of diverse catalytic systems constitute key features of this reaction. In this review article, attention has been drawn toward the recently reported methodologies for executing the Petasis reaction to produce structurally simple to complex aryl/allyl amino scaffolds.
Collapse
Affiliation(s)
- Sadaf Saeed
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (S.S.); (S.M.); (A.M.); (A.I.)
| | - Saba Munawar
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (S.S.); (S.M.); (A.M.); (A.I.)
| | - Sajjad Ahmad
- Department of Basic Sciences and Humanities, University of Engineering and Technology Lahore, Faisalabad Campus, Faisalabad 38000, Pakistan;
| | - Asim Mansha
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (S.S.); (S.M.); (A.M.); (A.I.)
| | - Ameer Fawad Zahoor
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (S.S.); (S.M.); (A.M.); (A.I.)
| | - Ali Irfan
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (S.S.); (S.M.); (A.M.); (A.I.)
| | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, Saudi Arabia;
| | - Katarzyna Kotwica-Mojzych
- Department of Histology, Embryology and Cytophysiology of the Department of Basic Sciences, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland;
| | - Malgorzata Soroka
- Faculty of Medicine, Collegium Medicum, The Mazovian Academy in Plock, Pl. Dąbrowskiego 2, 09-402 Płock, Poland;
| | - Mariola Głowacka
- Faculty of Health Sciences, Collegium Medicum, The Mazovian Academy in Plock, Pl. Dąbrowskiego 2, 09-402 Płock, Poland;
| | - Mariusz Mojzych
- Faculty of Medicine, Collegium Medicum, The Mazovian Academy in Plock, Pl. Dąbrowskiego 2, 09-402 Płock, Poland;
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 3-go Maja 54, 08-110 Siedlce, Poland
| |
Collapse
|
3
|
Li Y, Xu MH. Applications of Asymmetric Petasis Reaction in the Synthesis of Chiral Amines. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21080391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Lenci E, Bellini Puglielli R, Bucaletti E, Innocenti R, Trabocchi A. A Glucose‐Derived α‐Hydroxy Aldehyde for the Petasis Reaction: Facile Access to Polyfunctional δ‐Amino Acids. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Elena Lenci
- Department of Chemistry “Ugo Schiff” University of Florence Via della Lastruccia 13 50019 Florence Sesto Fiorentino Italy
| | - Raffaele Bellini Puglielli
- Department of Chemistry “Ugo Schiff” University of Florence Via della Lastruccia 13 50019 Florence Sesto Fiorentino Italy
| | - Elisabetta Bucaletti
- Department of Chemistry “Ugo Schiff” University of Florence Via della Lastruccia 13 50019 Florence Sesto Fiorentino Italy
| | - Riccardo Innocenti
- Department of Chemistry “Ugo Schiff” University of Florence Via della Lastruccia 13 50019 Florence Sesto Fiorentino Italy
| | - Andrea Trabocchi
- Department of Chemistry “Ugo Schiff” University of Florence Via della Lastruccia 13 50019 Florence Sesto Fiorentino Italy
- Interdepartmental Center for Preclinical Development of Molecular Imaging (CISPIM) University of Florence Viale Morgagni 85 50134 Florence Italy
| |
Collapse
|
5
|
Wu P, Givskov M, Nielsen TE. Reactivity and Synthetic Applications of Multicomponent Petasis Reactions. Chem Rev 2019; 119:11245-11290. [PMID: 31454230 PMCID: PMC6813545 DOI: 10.1021/acs.chemrev.9b00214] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Indexed: 02/06/2023]
Abstract
The Petasis boron-Mannich reaction, simply referred to as the Petasis reaction, is a powerful multicomponent coupling reaction of a boronic acid, an amine, and a carbonyl derivative. Highly functionalized amines with multiple stereogenic centers can be efficiently accessed via the Petasis reaction with high levels of both diastereoselectivity and enantioselectivity. By drawing attention to examples reported in the past 8 years, this Review demonstrates the breadth of the reactivity and synthetic applications of Petasis reactions in several frontiers: the expansion of the substrate scope in the classic three-component process; nonclassic Petasis reactions with additional components; Petasis-type reactions with noncanonical substrates, mechanism, and products; new asymmetric versions assisted by chiral catalysts; combinations with a secondary or tertiary transformation in a cascade- or sequence-specific manner to access structurally complex, natural-product-like heterocycles; and the synthesis of polyhydroxy alkaloids and biologically interesting molecules.
Collapse
Affiliation(s)
- Peng Wu
- Chemical
Genomics Center of the Max Planck Society, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Chemical
Biology and Therapeutics Science, Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department
of Medicine and Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
- Department
of Drug Design and Pharmacology, University
of Copenhagen, Copenhagen DK-2100, Denmark
| | - Michael Givskov
- Costerton
Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen DK-2200, Denmark
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Thomas E. Nielsen
- Costerton
Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen DK-2200, Denmark
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
6
|
Synthesis and stereochemistry assignment of (3R,5R)- and (3S,5R)-4-benzyl-3-(3,4-dimethoxyphenyl)-5-phenyl-1,4-oxazin-2-ones. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Lenci E, Rossi A, Menchi G, Trabocchi A. Short synthesis of polyfunctional sp3-rich threonine-derived morpholine scaffolds. Org Biomol Chem 2017; 15:9710-9717. [DOI: 10.1039/c7ob02454a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A convenient synthesis of sp3-rich complex morpholines was achieved in two steps involving a Petasis three-component coupling reaction followed by an acid- or base-mediated cyclization.
Collapse
Affiliation(s)
- Elena Lenci
- Department of Chemistry “Ugo Schiff”
- University of Florence
- 50019 Sesto Fiorentino
- Italy
| | - Alessio Rossi
- Department of Chemistry “Ugo Schiff”
- University of Florence
- 50019 Sesto Fiorentino
- Italy
| | - Gloria Menchi
- Department of Chemistry “Ugo Schiff”
- University of Florence
- 50019 Sesto Fiorentino
- Italy
- Interdepartmental Center for Preclinical Development of Molecular Imaging (CISPIM)
| | - Andrea Trabocchi
- Department of Chemistry “Ugo Schiff”
- University of Florence
- 50019 Sesto Fiorentino
- Italy
- Interdepartmental Center for Preclinical Development of Molecular Imaging (CISPIM)
| |
Collapse
|
8
|
Guerrera CA, Ryder TR. The Petasis Borono-Mannich Multicomponent Reaction. BORON REAGENTS IN SYNTHESIS 2016. [DOI: 10.1021/bk-2016-1236.ch009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Cessandra A. Guerrera
- Department of Chemistry, Southern Connecticut State University, New Haven, Connecticut 06515, United States
| | - Todd R. Ryder
- Department of Chemistry, Southern Connecticut State University, New Haven, Connecticut 06515, United States
| |
Collapse
|
9
|
Enantioselective Petasis reaction among salicylaldehydes, amines, and organoboronic acids catalyzed by BINOL. Tetrahedron 2013. [DOI: 10.1016/j.tet.2012.11.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
10
|
Li Y, Xu MH. Lewis acid promoted highly diastereoselective Petasis Borono-Mannich reaction: efficient synthesis of optically active β,γ-unsaturated α-amino acids. Org Lett 2012; 14:2062-5. [PMID: 22480132 DOI: 10.1021/ol300581n] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient and straightforward method for the preparation of highly enantiomerically enriched β,γ-unsaturated α-amino acid derivatives by a Lewis acid promoted diastereoselective Petasis reaction of vinylboronic acid, N-tert-butanesulfinamide, and glyoxylic acid has been developed. The synthetic utilities of the approach were demonstrated by the rapid and convenient construction of challenging cyclopenta[c]proline derivatives.
Collapse
Affiliation(s)
- Yi Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | | |
Collapse
|
11
|
Han WY, Wu ZJ, Zhang XM, Yuan WC. Enantioselective organocatalytic three-component Petasis reaction among salicylaldehydes, amines, and organoboronic acids. Org Lett 2012; 14:976-9. [PMID: 22292670 DOI: 10.1021/ol203109a] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The catalytic enantioselective three-component Petasis reaction among salicylaldehydes, amines, and organoboronic acids with a newly designed thiourea-binol catalyst is presented. A broad range of alkylaminophenols can be obtained in good yield (up to 92%) and good to high enantioselectivity (up to 95% ee). A possible reaction pathway for this catalytic enantioselective Petasis reaction is tentatively proposed.
Collapse
Affiliation(s)
- Wen-Yong Han
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | | | | | | |
Collapse
|
12
|
Churches QI, White JM, Hutton CA. Synthesis of β,γ-dihydroxyhomotyrosines by a tandem Petasis-asymmetric dihydroxylation approach. Org Lett 2011; 13:2900-3. [PMID: 21561144 DOI: 10.1021/ol200917s] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Petasis reactions of substituted styrenylboronic acids and glyoxylic acid, employing tert-butylsulfinamide as the 'amine' component, proceed with high stereoselectivity to produce β,γ-dehydrohomoarylalanine derivatives. Subsequent asymmetric dihydroxylation under neutral conditions gives the corresponding protected β,γ-dihydroxyhomoarylalanines with up to 15:1 dr. The method has been exploited in the efficient, stereoselective synthesis of protected β,γ-dihydroxyhomotyrosine, a component of the antifungal cyclic peptide echinocandin B.
Collapse
Affiliation(s)
- Quentin I Churches
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | | | | |
Collapse
|
13
|
|