1
|
Rosa M, Jędryka N, Skorupska S, Grabowska-Jadach I, Malinowski M. New Route to Glycosylated Porphyrins via Aromatic Nucleophilic Substitution (SNAr)—Synthesis and Cellular Uptake Studies. Int J Mol Sci 2022; 23:ijms231911321. [PMID: 36232622 PMCID: PMC9570116 DOI: 10.3390/ijms231911321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Glycoporphyrins are group of compounds of high value for the purpose of photodynamic therapy and other biomedical applications. Despite great progress in the field, new diversity-oriented syntheses of carbohydrate-porphyrin hybrids are increasingly desired. Herein, we present efficient, mild, and metal-free conditions for synthesis of glycoporphyrins. The versatile nature of the SNAr procedure is presented in 16 examples. Preliminary biological studies have been conducted on the cytotoxicity and cellular uptake of the final molecules.
Collapse
|
2
|
Ol’shevskaya VA, Kononova EG, Zaitsev AV. Fluorinated maleimide-substituted porphyrins and chlorins: synthesis and characterization. Beilstein J Org Chem 2019; 15:2704-2709. [PMID: 31807205 PMCID: PMC6880841 DOI: 10.3762/bjoc.15.263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/29/2019] [Indexed: 11/23/2022] Open
Abstract
Maleimide-containing fluorinated porphyrins and chlorins were prepared based on the reaction of Zn(II) or Ni(II) complexes of 5,10,15,20-tetrakis(4-amino-2,3,5,6-tetrafluorophenyl)porphyrin and chlorin with maleic anhydride. Porphyrin maleimide derivatives were also prepared by the reaction of 5,10,15,20-tetrakis(4-azido-2,3,5,6-tetrafluorophenyl)porphyrinato Zn(II) or Ni(II) with N-propargylmaleimide via the CuAAC click reaction to afford fluorinated porphyrin-triazole-maleimide conjugates. New maleimide derivatives were isolated in reasonable yields and identified by UV-vis, 1H NMR, 19F NMR spectroscopy and mass-spectrometry.
Collapse
Affiliation(s)
- Valentina A Ol’shevskaya
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991, Vavilova St. 28, Moscow, Russian Federation
| | - Elena G Kononova
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991, Vavilova St. 28, Moscow, Russian Federation
| | - Andrei V Zaitsev
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991, Vavilova St. 28, Moscow, Russian Federation
| |
Collapse
|
3
|
Non-covalent conjugation of sulfonated porphyrins to polyethylenimine-grafted multiwalled carbon nanotubes as efficient recyclable heterogeneous catalysts for dihydroxynaphthalenes photooxidation. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
On the synthesis, optical and computational studies of novel BODIPY-based phosphoramidate fluorescent dyes. J Fluor Chem 2019. [DOI: 10.1016/j.jfluchem.2019.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Rodrigues Furtado Medeiros AC, Gouvêa MM, Felipe TV, Marques FFDC, Bernardino AMR, López Ortiz F, de Souza MC. New o-substituted diphenylphosphinic amide ligands: synthesis, characterization and complexation with Zn2+, Cu2+ and Y3+. NEW J CHEM 2019. [DOI: 10.1039/c9nj02829c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphinic amide derivatives have drawn significant attention in coordination chemistry and have been incorporated into the design and synthesis of new ligands.
Collapse
Affiliation(s)
| | - Marcos Martins Gouvêa
- Programa de Pós-Graduação em Química
- Instituto de Química
- Universidade Federal Fluminense
- Niterói 24020-141
- Brazil
| | - Thaian Vieira Felipe
- Departamento de Química Orgânica
- Instituto de Química
- Universidade Federal Fluminense
- Niterói 24020-141
- Brazil
| | | | | | | | - Marcos Costa de Souza
- Programa de Pós-Graduação em Química
- Instituto de Química
- Universidade Federal Fluminense
- Niterói 24020-141
- Brazil
| |
Collapse
|
6
|
Sobotta L, Ziental D, Sniechowska J, Dlugaszewska J, Potrzebowski MJ. Lipid vesicle-loaded meso-substituted chlorins of high in vitro antimicrobial photodynamic activity. Photochem Photobiol Sci 2018; 18:213-223. [PMID: 30427035 DOI: 10.1039/c8pp00258d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photodynamic inactivation potential against bacteria of four chlorin derivatives with phenyl or fluorophenyl substituents was evaluated. The quantum yield values of singlet oxygen formation were in the range of 0.16-0.86. Compounds were characterized by high quantum yields of fluorescence (0.15-0.44) and moderate photostability in DMF solutions. Irradiation of chlorins in DMSO resulted in their phototransformation and then photodecomposition. Photodynamic inactivation of bacteria was performed after the compounds had been loaded into lipid vesicles. The following log reductions of growth values were obtained: Enterococcus faecalis >5.44; Staphylococcus aureus 2.74-5.34; Escherichia coli 0.01-2.14. No activity of meso-substituted chlorins was noticed against Pseudomonas aeruginosa and fungi Candida albicans and Trichophyton mentagrophytes.
Collapse
Affiliation(s)
- Lukasz Sobotta
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland.
| | - Daniel Ziental
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland.
| | - Justyna Sniechowska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Jolanta Dlugaszewska
- Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Swiecickiego 4, 60-781 Poznan, Poland
| | - Marek J Potrzebowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
7
|
Gutsche CS, Ortwerth M, Gräfe S, Flanagan KJ, Senge MO, Reissig HU, Kulak N, Wiehe A. Nucleophilic Aromatic Substitution on Pentafluorophenyl-Substituted Dipyrranes and Tetrapyrroles as a Route to Multifunctionalized Chromophores for Potential Application in Photodynamic Therapy. Chemistry 2016; 22:13953-13964. [PMID: 27549436 DOI: 10.1002/chem.201601857] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Indexed: 12/12/2022]
Abstract
The application of porphyrinoids in biomedical fields, such as photodynamic therapy (PDT), requires the introduction of functional groups to tune their solubility for the biological environment and to allow a coupling to other active moieties or carrier systems. A valuable motif in this regard is the pentafluorophenyl (PFP) substituent, which can easily undergo a regiospecific nucleophilic replacement (SN Ar) of its para-fluorine atom by a number of nucleophiles. Here, it is shown that, instead of amino-substitution on the final porphyrinoid or BODIPY (boron dipyrromethene), the precursor 5-(PFP)-dipyrrane can be modified with amines (or alcohols). These dipyrranes were transformed into amino-substituted BODIPYs. Condensation of these dipyrranes with aldehydes gave access to trans-A2 B2 -porphyrins and trans-A2 B-corroles. By using pentafluorobenzaldehyde, it was possible to introduce another para-fluorine atom, which enabled the synthesis of multifunctionalized tetrapyrroles. Furthermore, alkoxy- and amino-substituted dipyrranes were applied to the synthesis of A3 B3 -hexaphyrins. The polar porphyrins that were prepared by using this method exhibited in vitro PDT activity against several tumor cell lines.
Collapse
Affiliation(s)
- Claudia S Gutsche
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstrasse 34/36, 14195, Berlin, Germany.,Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany.,biolitec research GmbH, Otto-Schott-Str. 15, 07745, Jena, Germany
| | - Marlene Ortwerth
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstrasse 34/36, 14195, Berlin, Germany.,Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany.,biolitec research GmbH, Otto-Schott-Str. 15, 07745, Jena, Germany
| | - Susanna Gräfe
- biolitec research GmbH, Otto-Schott-Str. 15, 07745, Jena, Germany
| | - Keith J Flanagan
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Mathias O Senge
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Hans-Ulrich Reissig
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Nora Kulak
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstrasse 34/36, 14195, Berlin, Germany
| | - Arno Wiehe
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany. .,biolitec research GmbH, Otto-Schott-Str. 15, 07745, Jena, Germany.
| |
Collapse
|
8
|
Bhupathiraju NVSDK, Rizvi W, Batteas JD, Drain CM. Fluorinated porphyrinoids as efficient platforms for new photonic materials, sensors, and therapeutics. Org Biomol Chem 2016; 14:389-408. [PMID: 26514229 PMCID: PMC6180335 DOI: 10.1039/c5ob01839k] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Porphyrinoids are robust heterocyclic dyes studied extensively for their applications in medicine and as photonic materials because of their tunable photophysical properties, diverse means of modifying the periphery, and the ability to chelate most transition metals. Commercial applications include their use as phthalocyanine dyes in optical discs, porphyrins in photodynamic therapy, and as oxygen sensors. Most applications of these dyes require exocyclic moieties to improve solubility, target diseases, modulate photophysical properties, or direct the self-organization into architectures with desired photonic properties. The synthesis of the porphyrinoid depends on the desired application, but the de novo synthesis often involves several steps, is time consuming, and results in low isolated yields. Thus, the application of core porphyrinoid platforms that can be rapidly and efficiently modified to evaluate new molecular architectures allows researchers to focus on the design concepts rather than the synthesis methods, and opens porphyrinoid chemistry to a broader scientific community. We have focused on several widely available, commercially viable porphyrinoids as platforms: meso-perfluorophenylporphyrin, perfluorophthalocyanine, and meso-perfluorophenylcorrole. The perfluorophenylporphyrin is readily converted to the chlorin, bacteriochlorin, and isobacteriochlorin. Derivatives of all six of these core platforms can be efficiently and controllably made via mild nucleophilic aromatic substitution reactions using primary S, N, and O nucleophiles bearing a wide variety of functional groups. The remaining fluoro groups enhance the photo and oxidative stability of the dyes and can serve as spectroscopic signatures to characterize the compounds or in imaging applications using (19)F NMR. This review provides an overview of the chemistry of fluorinated porphyrinoids that are being used as a platform to create libraries of photo-active compounds for applications in medicine and materials.
Collapse
Affiliation(s)
- N V S Dinesh K Bhupathiraju
- Department of Chemistry and Biochemistry, Hunter College and Graduate Center of the City University of New York (CUNY), 695 Park Avenue, New York, NY 10065, USA
| | | | | | | |
Collapse
|
9
|
Vinagreiro CS, Gonçalves NP, Calvete MJ, Schaberle FA, Arnaut LG, Pereira MM. Synthesis and characterization of biocompatible bimodal meso-sulfonamide-perfluorophenylporphyrins. J Fluor Chem 2015. [DOI: 10.1016/j.jfluchem.2015.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Recent advances in H-phosphonate chemistry. Part 1. H-phosphonate esters: synthesis and basic reactions. Top Curr Chem (Cham) 2015; 361:137-77. [PMID: 25370520 DOI: 10.1007/128_2014_562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This review covers recent progress in the preparation of H-phosphonate mono- and diesters, basic studies on mechanistic and stereochemical aspects of this class of phosphorus compounds, and their fundamental chemistry in terms of transformation of P-H bonds into P-heteroatom bonds. Selected recent applications of H-phosphonate derivatives in basic organic phosphorus chemistry and in the synthesis of biologically important phosphorus compounds are also discussed.
Collapse
|
11
|
Costa DC, Pais VF, Silva AM, Cavaleiro JA, Pischel U, Tomé JP. Cationic porphyrins with inverted pyridinium groups and their fluorescence properties. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.05.108] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
de Souza MC, Pedrosa LF, Cazagrande GS, Ferreira VF, Neves MGPMS, Cavaleiro JAS. From porphyrin benzylphosphoramidate conjugates to the catalytic hydrogenation of 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin. Beilstein J Org Chem 2014; 10:628-33. [PMID: 24778713 PMCID: PMC3999763 DOI: 10.3762/bjoc.10.54] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 02/04/2014] [Indexed: 12/01/2022] Open
Abstract
Three new porphyrin aminoalkyl dibenzylphosphoramidates were synthesized by nucleophilic aromatic substitution of one p-fluorine atom of 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin (TPPF20) by primary aminoalkyl dibenzylphosphoramidates. The nucleophilic aromatic substitution was promoted by microwave irradiation in N-methyl-2-pyrrolidinone. Attempts to remove the benzyl groups of the phosphoramidate moiety by hydrogenolysis with 10% Pd/C led to the cleavage of the P–N bond and the reduction of the macrocycle to hydroporphyrin-type derivatives. The extent of the effect of the catalytic hydrogenation to TPPF20 with 10% Pd/C was then studied with a variety of solvents. The results showed that ethanol/DMF is the solvent of choice to produce chlorin TPCF20 and an ethanol/DMF/NEt3 mixture is more adequate to produce isobacteriochlorin (TPIF20).
Collapse
Affiliation(s)
- Marcos C de Souza
- Departamento de Química Orgânica, Universidade Federal Fluminense, 24020-141 Niterói, RJ, Brasil, ; Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Leandro F Pedrosa
- Departamento de Química Orgânica, Universidade Federal Fluminense, 24020-141 Niterói, RJ, Brasil
| | - Géssica S Cazagrande
- Departamento de Química Orgânica, Universidade Federal Fluminense, 24020-141 Niterói, RJ, Brasil
| | - Vitor F Ferreira
- Departamento de Química Orgânica, Universidade Federal Fluminense, 24020-141 Niterói, RJ, Brasil
| | - Maria G P M S Neves
- Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
| | - José A S Cavaleiro
- Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
13
|
Castro KADF, Simões MMQ, Neves MGPMS, Cavaleiro JAS, Wypych F, Nakagaki S. Glycol metalloporphyrin derivatives in solution or immobilized on LDH and silica: synthesis, characterization and catalytic features in oxidation reactions. Catal Sci Technol 2014. [DOI: 10.1039/c3cy00472d] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Pedrosa LF, de Macedo WP, Furtado ACR, Guedes GP, Pinheiro LCS, Resende JALC, Vaz MGF, Bernardino AMR, de Souza MC. Synthesis, Crystal Structures, and in Silico Toxicity Prediction of Thienopyridine Phosphoramidates. SYNTHETIC COMMUN 2013. [DOI: 10.1080/00397911.2013.786092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Leandro F. Pedrosa
- a Instituto de Química, Universidade Federal Fluminense , Niterói , Brazil
| | | | | | - Guilherme P. Guedes
- a Instituto de Química, Universidade Federal Fluminense , Niterói , Brazil
- b Departamento de Química , Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro , Seropédica , Brazil
| | | | | | - Maria G. F. Vaz
- a Instituto de Química, Universidade Federal Fluminense , Niterói , Brazil
| | | | - Marcos C. de Souza
- a Instituto de Química, Universidade Federal Fluminense , Niterói , Brazil
| |
Collapse
|
15
|
Costa JI, Tomé AC, Neves MG, Cavaleiro JA. 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin: a versatile platform to novel porphyrinic materials. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424611004294] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
5,10,15,20-tetrakis(pentafluorophenyl)porphyrin reacts with a range of nucleophiles (amines, alcohols, thiols, nitrogen heterocycles, and others) resulting in the nucleophilic aromatic substitution of the para-F atoms of the pentafluorophenyl groups. This reaction, which was fortuitously discovered by Kadish and collaborators in 1990, is now being extensively used to synthesize porphyrins bearing electron-donating substituents in the para-position of their meso-aryl groups. This mini-review highlights the methods of synthesis of 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin, the use of its metal complexes in catalysis and its reaction with nucleophiles to yield new monomeric porphyrins, porphyrins supported in polymers or new polymeric porphyrin matrices useful for heterogeneous catalysis.
Collapse
Affiliation(s)
- Joana I.T. Costa
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Augusto C. Tomé
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria G.P.M.S. Neves
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
| | - José A.S. Cavaleiro
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|