1
|
O'Hair RAJ. ORGANOMETALLIC GAS-PHASE ION CHEMISTRY AND CATALYSIS: INSIGHTS INTO THE USE OF METAL CATALYSTS TO PROMOTE SELECTIVITY IN THE REACTIONS OF CARBOXYLIC ACIDS AND THEIR DERIVATIVES. MASS SPECTROMETRY REVIEWS 2021; 40:782-810. [PMID: 32965774 DOI: 10.1002/mas.21654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Carboxylic acids are valuable organic substrates as they are widely available, easy to handle, and exhibit structural and functional variety. While they are used in many standard synthetic protocols, over the past two decades numerous studies have explored new modes of metal-mediated reactivity of carboxylic acids and their derivatives. Mass spectrometry-based studies can provide fundamental mechanistic insights into these new modes of reactivity. Here gas-phase models for the following catalytic transformations of carboxylic acids and their derivatives are reviewed: protodecarboxylation; dehydration; decarbonylation; reaction as coordinated bases in C-H bond activation; remote functionalization and decarboxylative C-C bond coupling. In each case the catalytic problem is defined, insights from gas-phase studies are highlighted, comparisons with condensed-phase systems are made and perspectives are reached. Finally, the potential role for mechanistic studies that integrate both gas- and condensed-phase studies is highlighted by recent studies on the discovery of new catalysts for the selective decomposition of formic acid and the invention of the new extrusion-insertion class of reactions for the synthesis of amides, thioamides, and amidines. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Richard A J O'Hair
- School of Chemistry, University of Melbourne, Victoria, 3010, Australia
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
2
|
Schörgenhumer J, Waser M. Transition metal-free coupling of terminal alkynes and hypervalent iodine-based alkyne-transfer reagents to access unsymmetrical 1,3-diynes. Org Biomol Chem 2018; 16:7561-7563. [PMID: 30288537 DOI: 10.1039/c8ob02375a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A variety of unsymmetrical 1,3-diynes can easily be accessed in good yields under catalyst- and transition metal-free conditions by reacting terminal alkynes with hypervalent iodine-based electrophilic alkyne-transfer reagents.
Collapse
Affiliation(s)
- J Schörgenhumer
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria.
| | - M Waser
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria.
| |
Collapse
|
3
|
Lightcap J, Hester TH, Patterson D, Butler JT, Goebbert DJ. Formation of a Spin-Forbidden Product, 1[MnO 4] −, from Gas-Phase Decomposition of 6[Mn(NO 3) 3] −. J Phys Chem A 2016; 120:7071-9. [DOI: 10.1021/acs.jpca.6b06978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Johnny Lightcap
- Department of Chemistry, The University of Alabama, Box 870336, Tuscaloosa, Alabama 35487, United States
| | - Thomas H. Hester
- Department of Chemistry, The University of Alabama, Box 870336, Tuscaloosa, Alabama 35487, United States
| | - Daniel Patterson
- Department of Chemistry, The University of Alabama, Box 870336, Tuscaloosa, Alabama 35487, United States
| | - Joseph T. Butler
- Department of Chemistry, The University of Alabama, Box 870336, Tuscaloosa, Alabama 35487, United States
| | - Daniel J. Goebbert
- Department of Chemistry, The University of Alabama, Box 870336, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
4
|
Hester TH, Albury RM, Pruitt CJM, Goebbert DJ. Fragmentation of [Ni(NO 3) 3] −: A Study of Nickel–Oxygen Bonding and Oxidation States in Nickel Oxide Fragments. Inorg Chem 2016; 55:6634-42. [DOI: 10.1021/acs.inorgchem.6b00812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thomas H. Hester
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Rachael M. Albury
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Carrie Jo M. Pruitt
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Daniel J. Goebbert
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
5
|
O’Hair RAJ, Rijs NJ. Gas phase studies of the Pesci decarboxylation reaction: synthesis, structure, and unimolecular and bimolecular reactivity of organometallic ions. Acc Chem Res 2015; 48:329-40. [PMID: 25594228 DOI: 10.1021/ar500377u] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
CONSPECTUS: Decarboxylation chemistry has a rich history, and in more recent times, it has been recruited in the quest to develop cheaper, cleaner, and more efficient bond-coupling reactions. Thus, over the past two decades, there has been intense investigation into new metal-catalyzed reactions of carboxylic substrates. Understanding the elementary steps of metal-mediated transformations is at the heart of inventing new reactions and improving the performance of existing ones. Fortunately, during the same time period, there has been a convergence in mass spectrometry (MS) techniques, which allows these catalytic processes to be examined efficiently in the gas phase. Thus, electrospray ionization (ESI) sources have been combined with ion-trap mass spectrometers, which in turn have been modified to either accept radiation from tunable OPO lasers for spectroscopy based structural assignment of ions or to allow the study of ion-molecule reactions (IMR). The resultant "complete" gas-phase chemical laboratories provide a platform to study the elementary steps of metal-catalyzed decarboxylation reactions in exquisite detail. In this Account, we illustrate how the powerful combination of ion trap mass spectrometry experiments and DFT calculations can be systematically used to examine the formation of organometallic ions and their chemical transformations. Specifically, ESI-MS allows the transfer of inorganic carboxylate complexes, [RCO2M(L)n](x), (x = charge) from the condensed to the gas phase. These mass selected ions serve as precursors to organometallic ions [RM(L)n](x) via neutral extrusion of CO2, accessible by slow heating in the ion trap using collision induced dissociation (CID). This approach provides access to an array of organometallic ions with well-defined stoichiometry. In terms of understanding the decarboxylation process, we highlight the role of the metal center (M), the organic group (R), and the auxiliary ligand (L), along with cluster nuclearity, in promoting the formation of the organometallic ion. Where isomeric organometallic ions are generated and normal MS approaches cannot distinguish them, we describe approaches to elucidate the decarboxylation mechanism via determination of their structure. These "unmasked" organometallic ions, [RM(L)n](x), can also be structurally interrogated spectroscopically or via CID. We have thus compared the gas-phase structures and decomposition of several highly reactive and synthetically important organometallic ions for the first time. Perhaps the most significant aspect of this work is the study of bimolecular reactions, which provides experimental information on mechanistically obscure bond-formation and cross-coupling steps and the intrinsic reactivity of ions. We have sought to understand transformations of substrates including acid-base and hydrolysis reactions, along with reactions resulting in C-C bond formation. Our studies also allow a direct comparison of the performance of different metal catalysts in the individual elementary steps associated with protodecarboxylation and decarboxylative alkylation cycles. Electronic structure (DFT and ab initio) and dynamics (RRKM) calculations provide further mechanistic insights into these reactions. The broad implications of this research are that new reactions can be discovered and that the performance of metal catalysts can be evaluated in terms of each of their elementary steps. This has been particularly useful for the study of metal-mediated decarboxylation reactions.
Collapse
Affiliation(s)
- Richard A. J. O’Hair
- School of Chemistry, University of Melbourne, Melbourne, Victoria 3010, Australia
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Melbourne, Victoria 3010, Australia
- ARC Centre of Excellence in Free Radical Chemistry and Biotechnology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Nicole J. Rijs
- School of Chemistry, University of Melbourne, Melbourne, Victoria 3010, Australia
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Melbourne, Victoria 3010, Australia
- ARC Centre of Excellence in Free Radical Chemistry and Biotechnology, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
6
|
Li J, Khairallah GN, O’Hair RAJ. Dimethylcuprate-Mediated Transformation of Acetate to Dithioacetate. Organometallics 2015. [DOI: 10.1021/om501117p] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jiawei Li
- School
of Chemistry, Bio21
Institute of Molecular Science and Biotechnology, and ARC Centre of Excellence for Free Radical Chemistry
and Biotechnology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - George N. Khairallah
- School
of Chemistry, Bio21
Institute of Molecular Science and Biotechnology, and ARC Centre of Excellence for Free Radical Chemistry
and Biotechnology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Richard A. J. O’Hair
- School
of Chemistry, Bio21
Institute of Molecular Science and Biotechnology, and ARC Centre of Excellence for Free Radical Chemistry
and Biotechnology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
7
|
Li J, Khairallah GN, Steinmetz V, Maitre P, O'Hair RAJ. Copper mediated decyano decarboxylative coupling of cyanoacetate ligands: Pesci versus Lewis acid mechanism. Dalton Trans 2015; 44:9230-40. [DOI: 10.1039/c5dt00942a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combination of gas-phase ion trap multistage mass spectrometry (MSn) experiments and density functional theory (DFT) calculations have been used to examine the mechanisms of the sequential decomposition reactions of copper cyanoacetate anions, [(NCCH2CO2)2Cu]−.
Collapse
Affiliation(s)
- Jiawei Li
- School of Chemistry
- University of Melbourne
- Australia
- Bio21 Institute of Molecular Science and Biotechnology
- The University of Melbourne
| | - George N. Khairallah
- School of Chemistry
- University of Melbourne
- Australia
- Bio21 Institute of Molecular Science and Biotechnology
- The University of Melbourne
| | - Vincent Steinmetz
- Laboratoire de Chimie Physique
- UMR8000 CNRS
- Université Paris-Sud
- Orsay
- France
| | - Philippe Maitre
- Laboratoire de Chimie Physique
- UMR8000 CNRS
- Université Paris-Sud
- Orsay
- France
| | - Richard A. J. O'Hair
- School of Chemistry
- University of Melbourne
- Australia
- Bio21 Institute of Molecular Science and Biotechnology
- The University of Melbourne
| |
Collapse
|
8
|
Woolley M, Ariafard A, Khairallah GN, Kwan KH, Donnelly PS, White JM, Canty AJ, Yates BF, O'Hair RAJ. Decarboxylative-coupling of allyl acetate catalyzed by group 10 organometallics, [(phen)M(CH3)]+. J Org Chem 2014; 79:12056-69. [PMID: 25329236 DOI: 10.1021/jo501886w] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Gas-phase carbon-carbon bond forming reactions, catalyzed by group 10 metal acetate cations [(phen)M(O2CCH3)](+) (where M = Ni, Pd or Pt) formed via electrospray ionization of metal acetate complexes [(phen)M(O2CCH3)2], were examined using an ion trap mass spectrometer and density functional theory (DFT) calculations. In step 1 of the catalytic cycle, collision induced dissociation (CID) of [(phen)M(O2CCH3)](+) yields the organometallic complex, [(phen)M(CH3)](+), via decarboxylation. [(phen)M(CH3)](+) reacts with allyl acetate via three competing reactions, with reactivity orders (% reaction efficiencies) established via kinetic modeling. In step 2a, allylic alkylation occurs to give 1-butene and reform metal acetate, [(phen)M(O2CCH3)](+), with Ni (36%) > Pd (28%) > Pt (2%). Adduct formation, [(phen)M(C6H11O2)](+), occurs with Pt (24%) > Pd (21%) > Ni(11%). The major losses upon CID on the adduct, [(phen)M(C6H11O2)](+), are 1-butene for M = Ni and Pd and methane for Pt. Loss of methane only occurs for Pt (10%) to give [(phen)Pt(C5H7O2)](+). The sequences of steps 1 and 2a close a catalytic cycle for decarboxylative carbon-carbon bond coupling. DFT calculations suggest that carbon-carbon bond formation occurs via alkene insertion as the initial step for all three metals, without involving higher oxidation states for the metal centers.
Collapse
Affiliation(s)
- Matthew Woolley
- School of Chemistry, ‡Bio21 Institute of Molecular Science and Biotechnology, and §ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, The University of Melbourne , Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Woolley M, Khairallah GN, da Silva G, Donnelly PS, O’Hair RAJ. Direct versus Water-Mediated Protodecarboxylation of Acetic Acid Catalyzed by Group 10 Carboxylates, [(phen)M(O2CCH3)]+. Organometallics 2014. [DOI: 10.1021/om500493w] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matthew Woolley
- School of Chemistry, ‡Bio21 Institute of Molecular Science
and Biotechnology, §ARC Centre of Excellence
for Free Radical Chemistry and Biotechnology, and ∥Department of Chemical and Biomolecular
Engineering, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - George N. Khairallah
- School of Chemistry, ‡Bio21 Institute of Molecular Science
and Biotechnology, §ARC Centre of Excellence
for Free Radical Chemistry and Biotechnology, and ∥Department of Chemical and Biomolecular
Engineering, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Gabriel da Silva
- School of Chemistry, ‡Bio21 Institute of Molecular Science
and Biotechnology, §ARC Centre of Excellence
for Free Radical Chemistry and Biotechnology, and ∥Department of Chemical and Biomolecular
Engineering, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Paul S. Donnelly
- School of Chemistry, ‡Bio21 Institute of Molecular Science
and Biotechnology, §ARC Centre of Excellence
for Free Radical Chemistry and Biotechnology, and ∥Department of Chemical and Biomolecular
Engineering, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Richard A. J. O’Hair
- School of Chemistry, ‡Bio21 Institute of Molecular Science
and Biotechnology, §ARC Centre of Excellence
for Free Radical Chemistry and Biotechnology, and ∥Department of Chemical and Biomolecular
Engineering, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
10
|
Wille U. Physical Organic Chemistry. Aust J Chem 2014. [DOI: 10.1071/ch14106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|