1
|
Wang Y, Chen X, Chen J. Advances of the mechanism for copper tolerance in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112299. [PMID: 39455032 DOI: 10.1016/j.plantsci.2024.112299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
Copper (Cu) is a vital trace element necessary for plants growth and development. It acts as a co-factor for enzymes and plays a crucial role in various physiological processes, including photosynthesis, respiration, antioxidant systems, and hormone signaling transduction. However, excessive amounts of Cu can disrupt normal physiological metabolism, thus hindering plant growth, development, and reducing yield. In recent years, the widespread abuse of Cu-containing fungicides and industrial Cu pollution has resulted in significant soil contamination. Therefore, it is of utmost importance to uncover the adverse effects of excessive Cu on plant growth and delve into the molecular mechanisms employed by plants to counteract the stress caused by excessive Cu. Recent studies have confirmed the inhibitory effects of excess Cu on mineral nutrition, chlorophyll biosynthesis, and antioxidant enzyme activity. This review systematically outlines the ways in which plants tolerate excessive Cu stress and summarizes them into eight Cu-tolerance strategies. Furthermore, it highlights the necessity for further research to comprehend the molecular regulatory mechanisms underlying the responses to excessive Cu stress.
Collapse
Affiliation(s)
- Yamei Wang
- School of Agriculture and Biotechnology, Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
| | - Xueke Chen
- School of Agriculture and Biotechnology, Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
| | - Jingguang Chen
- School of Agriculture and Biotechnology, Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
2
|
Wang X, Wang X, Mu H, Zhao B, Song X, Fan H, Wang B, Yuan F. Global analysis of key post-transcriptional regulation in early leaf development of Limonium bicolor identifies a long non-coding RNA that promotes salt gland development and salt resistance. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5091-5110. [PMID: 38795330 DOI: 10.1093/jxb/erae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 05/23/2024] [Indexed: 05/27/2024]
Abstract
Limonium bicolor, known horticulturally as sea lavender, is a typical recretohalophyte with salt glands in its leaf epidermis that secrete excess Na+ out of the plant. Although many genes have been proposed to contribute to salt gland initiation and development, a detailed analysis of alternative splicing, alternative polyadenylation patterns, and long non-coding RNAs (lncRNAs) has been lacking. Here, we applied single-molecule long-read mRNA isoform sequencing (Iso-seq) to explore the complexity of the L. bicolor transcriptome in leaves during salt gland initiation (stage A) and salt gland differentiation (stage B) based on the reference genome. We identified alternative splicing events and the use of alternative poly(A) sites unique to stage A or stage B, leading to the hypothesis that they might contribute to the differentiation of salt glands. Based on the Iso-seq data and RNA in situ hybridization of candidate genes, we selected the lncRNA Btranscript_153392 for gene editing and virus-induced gene silencing to dissect its function. In the absence of this transcript, we observed fewer salt glands on the leaf epidermis, leading to diminished salt secretion and salt tolerance. Our data provide transcriptome resources for unraveling the mechanisms behind salt gland development and furthering crop transformation efforts towards enhanced survivability in saline soils.
Collapse
Affiliation(s)
- Xi Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Xiaoyu Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Huiying Mu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Boqing Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Xianrui Song
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Hai Fan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, Shandong, China
| |
Collapse
|
3
|
Sharma A, Pandey H, Nampoothiri Devadas VAS, Kartha BD, Jha R. Production of, Factors Affecting, Gene Regulations, and Challenges in Tissue Cultured Plant through Soilless Culture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5804-5811. [PMID: 36995942 DOI: 10.1021/acs.jafc.2c08162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Soilless culture also known as water based culture and substrate based culture has immense potential to grow tissue cultured plants in a closed and controlled environment system. This review analyzes the various factors that affect the vegetative growth, reproductive growth, metabolic processes, and gene regulatory functions of tissue cultured plants and the suitability of soilless culture for tissue culture plants. Experiments show that morphological and reproductive abnormalities are mitigated in tissue cultured plants by gene regulation in a closed and controlled environment system. Various factors of a soilless culture influence gene regulation and enhance cellular, molecular, and biochemical processes and compensate constraints in tissue cultured plants in closed and controlled environment conditions. The soilless culture can be utilized to harden and grow tissue culture plants. The tissue cultured plants counter water logging problems and are supplied with nutrients at 7 day intervals in the water based culture. It is necessary to analyze the involvement of regulatory genes in detail in combating challenges of tissue cultured plants in soilless cultures under closed systems. Detailed studies are also required to determine anatomy, genesis, and function of microtuber cells in tissue cultured plants.
Collapse
Affiliation(s)
- Avinash Sharma
- Faculty of Agricultural Sciences, Arunachal University of Studies, Namsai, Arunachal Pradesh 792103, India
| | - Himanshu Pandey
- Division of Plant Physiology and Biochemistry, Indian Institute of Sugarcane Research, Lucknow, Uttar Pradesh 226005, India
| | | | - Bhagya D Kartha
- Department of Fruit Crops, College of Agriculture, Kerala Agricultural University, Thrissur, Kerala 680656, India
| | - Rani Jha
- Faculty of Chemistry, Arunachal University of Studies, Namsai, Arunachal Pradesh 792103, India
| |
Collapse
|
4
|
Genome-Wide Identification and Characterization of Copper Chaperone for Superoxide Dismutase (CCS) Gene Family in Response to Abiotic Stress in Soybean. Int J Mol Sci 2023; 24:ijms24065154. [PMID: 36982229 PMCID: PMC10048983 DOI: 10.3390/ijms24065154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/10/2023] Open
Abstract
Copper Chaperone For Superoxide Dismutase (CCS) genes encode copper chaperone for Superoxide dismutase (SOD) and dramatically affect the activity of SOD through regulating copper delivery from target to SOD. SOD is the effective component of the antioxidant defense system in plant cells to reduce oxidative damage by eliminating Reactive oxygen species (ROS), which are produced during abiotic stress. CCS might play an important role in abiotic stress to eliminate the damage caused by ROS, however, little is known about CCS in soybean in abiotic stress regulation. In this study, 31 GmCCS gene family members were identified from soybean genome. These genes were classified into 4 subfamilies in the phylogenetic tree. Characteristics of 31 GmCCS genes including gene structure, chromosomal location, collinearity, conserved domain, protein motif, cis-elements, and tissue expression profiling were systematically analyzed. RT-qPCR was used to analyze the expression of 31 GmCCS under abiotic stress, and the results showed that 5 GmCCS genes(GmCCS5, GmCCS7, GmCCS8, GmCCS11 and GmCCS24) were significantly induced by some kind of abiotic stress. The functions of these GmCCS genes in abiotic stress were tested using yeast expression system and soybean hairy roots. The results showed that GmCCS7/GmCCS24 participated in drought stress regulation. Soybean hairy roots expressing GmCCS7/GmCCS24 showed improved drought stress tolerance, with increased SOD and other antioxidant enzyme activities. The results of this study provide reference value in-depth study CCS gene family, and important gene resources for the genetic improvement of soybean drought stress tolerance.
Collapse
|
5
|
Sanyal RP, Prashar V, Jawali N, Sunkar R, Misra HS, Saini A. Molecular and Biochemical Analysis of Duplicated Cytosolic CuZn Superoxide Dismutases of Rice and in silico Analysis in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:864330. [PMID: 35707617 PMCID: PMC9191229 DOI: 10.3389/fpls.2022.864330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
Superoxide dismutases (SODs, EC 1.15.1.1) are ubiquitous antioxidant metalloenzymes important for oxidative stress tolerance and cellular redox environment. Multiple factors have contributed toward the origin and diversity of SOD isoforms among different organisms. In plants, the genome duplication events, responsible for the generation of multiple gene copies/gene families, have also contributed toward the SOD diversity. However, the importance of such molecular events on the characteristics of SODs has not been studied well. This study investigated the effects of divergence on important characteristics of two block-duplicated rice cytosolic CuZn SODs (OsCSD1, OsCSD4), along with in silico assessment of similar events in other plants. The analysis revealed heterogeneity in gene length, regulatory regions, untranslated regions (UTRs), and coding regions of two OsCSDs. An inconsistency in the database-predicted OsCSD1 gene structure was also identified and validated experimentally. Transcript analysis showed differences in the basal levels and stress responsiveness of OsCSD1 and OsCSD4, and indicated the presence of two transcription start sites in the OsCSD1. At the amino acid level, the two OsCSDs showed differences at 18 sites; however, both exist as a homodimer, displaying typical CuZn SOD characteristics, and enhancing the oxidative stress tolerance of Escherichia coli cells. However, OsCSD4 showed higher specific activity as well as stability. The comparison of the two OsCSDs with reported thermostable CSDs from other plants identified regions likely to be associated with stability, while the homology modeling and superposition highlighted structural differences. The two OsCSDs displayed heteromeric interaction capability and forms an enzymatically active heterodimer (OsCSD1:OsCSD4) on co-expression, which may have significance as both are cytosolic. In silico analysis of 74 plant genomes revealed the prevalence of block duplications for multiple CSD copies (mostly cytosolic). The divergence and clustering analysis of CSDs suggested the possibility of an ancestral duplication event in monocots. Conserved SOD features indicating retention of SOD function among CSD duplicates were evident in few monocots and dicots. In most other species, the CSD copies lacked critical features and may not harbor SOD function; however, other feature-associated functions or novel functions might be present. These aspects of divergent CSD copies encoding co-localized CSDs may have implications in plant SOD functions in the cytosol and other organelles.
Collapse
Affiliation(s)
- Ravi Prakash Sanyal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Vishal Prashar
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Narendra Jawali
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Centre for Natural Biological Resources and Community Development, Bengaluru, India
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States
| | - Hari Sharan Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Ajay Saini
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
6
|
Wu H, Liu J, Zhang X, Zhang X, Zhang J, Ma E. Four alternative splicing transcripts of intracellular copper/zinc superoxide dismutase 1 in Oxya chinensis. Int J Biol Macromol 2021; 193:1600-1609. [PMID: 34740682 DOI: 10.1016/j.ijbiomac.2021.10.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/09/2021] [Accepted: 10/29/2021] [Indexed: 11/20/2022]
Abstract
In this study, we obtained four alternative splicing transcripts of intracellular copper/zinc superoxide dismutase 1 (icCuZnSOD1) in Oxya chinensis. OcicCuZnSOD1a has all common characteristics of CuZnSOD family and is a canonical CuZnSOD. OcicCuZnSOD1b is missing a Zn binding site. OcicCuZnSOD1c lacks Zn ion and is a Cu-only SOD. OcicCuZnSOD1d is missing a CuZnSOD conserved sequence and lacks the E-loop, a conserved disulfide bond, and an active site arginine. OcicCuZnSOD1a was the most heat-resistant and OcicCuZnSOD1c was the most unstable at high temperatures above 55 °C. They were stable at a wide pH range, especially in alkaline conditions. The four variants expressed at the throughout developmental stages and had various tissue expression patterns. OcicCuZnSOD1a and OcicCuZnSOD1d were significantly induced by 8.79 mM CuCl2 and OcicCuZnSOD1b was significantly up-regulated by 14.67 mM CuCl2. OcicCuZnSOD1a was significantly inhibited by 19.13 mM ZnSO4 while OcicCuZnSOD1d were significantly induced by 22.61 mM ZnSO4. Disc diffusion assay showed that the four isoforms of OcicCuZnSOD1 made the killing zones smaller surrounding the CdCl2-soaked filter discs. However, the reduction ratios of OcicCuZnSOD1a were the highest. These results implied that the four transcripts played roles in defense against CdCl2-induced oxidative stress while OcicCuZnSOD1a had stronger antioxidant capacity.
Collapse
Affiliation(s)
- Haihua Wu
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| | - Jing Liu
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xuhan Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xueyao Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Enbo Ma
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
7
|
Saini A, Rohila JS, Govindan G, Li YF, Sunkar R. Splice Variants of Superoxide Dismutases in Rice and Their Expression Profiles under Abiotic Stresses. Int J Mol Sci 2021; 22:ijms22083997. [PMID: 33924430 PMCID: PMC8068833 DOI: 10.3390/ijms22083997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/11/2021] [Indexed: 01/02/2023] Open
Abstract
The superoxide dismutases (SODs) play vital roles in controlling cellular reactive oxygen species (ROS) that are generated both under optimal as well as stress conditions in plants. The rice genome harbors seven SOD genes (CSD1, CSD2, CSD3, CSD4, FSD1, FSD2, and MSD) that encode seven constitutive transcripts. Of these, five (CSD2, CSD3, CSD4, FSD1, and MSD) utilizes an alternative splicing (AS) strategy and generate seven additional splice variants (SVs) or mRNA variants, i.e., three for CSD3, and one each for CSD2, CSD4, FSD1, and MSD. The exon-intron organization of these SVs revealed variations in the number and length of exons and/or untranslated regions (UTRs). We determined the expression patterns of SVs along with their constitutive forms of SODs in rice seedlings exposed to salt, osmotic, cold, heavy metal (Cu+2) stresses, as well as copper-deprivation. The results revealed that all seven SVs were transcriptionally active in both roots and shoots. When compared to their corresponding constitutive transcripts, the profiles of five SVs were almost similar, while two specific SVs (CSD3-SV4 and MSD-SV2) differed significantly, and the differences were also apparent between shoots and roots suggesting that the specific SVs are likely to play important roles in a tissue-specific and stress-specific manner. Overall, the present study has provided a comprehensive analysis of the SVs of SODs and their responses to stress conditions in shoots and roots of rice seedlings.
Collapse
Affiliation(s)
- Ajay Saini
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA; (A.S.); (G.G.); (Y.-F.L.)
- Bhabha Atomic Research Centre, Molecular Biology Division, Trombay, Mumbai, Maharashtra 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Trombay, Mumbai, Maharashtra 400094, India
| | - Jai S. Rohila
- Dale Bumpers National Rice Research Center, United States Department of Agriculture-Agricultural Research Services, Stuttgart, AR 72160, USA;
| | - Ganesan Govindan
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA; (A.S.); (G.G.); (Y.-F.L.)
| | - Yong-Fang Li
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA; (A.S.); (G.G.); (Y.-F.L.)
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA; (A.S.); (G.G.); (Y.-F.L.)
- Correspondence:
| |
Collapse
|
8
|
Wang T, Song H, Zhang B, Lu Q, Liu Z, Zhang S, Guo R, Wang C, Zhao Z, Liu J, Peng R. Genome-wide identification, characterization, and expression analysis of superoxide dismutase (SOD) genes in foxtail millet ( Setaria italica L.). 3 Biotech 2018; 8:486. [PMID: 30498660 PMCID: PMC6240016 DOI: 10.1007/s13205-018-1502-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/01/2018] [Indexed: 11/25/2022] Open
Abstract
Superoxide dismutases (SODs) play important roles in plant growth, development, and response to abiotic stresses. Despite SOD gene families have been identified in various plant species, little is known in foxtail millet (Setaria italica L.). In this study, a systematic analysis of SOD gene family was performed in foxtail millet and the expression pattern of SOD genes in response to abiotic stressors was analyzed at the whole-genomic level. Eight SOD genes were identified in foxtail millet, including 4 Cu/ZnSODs, 3 FeSODs, and 1 MnSOD. These SiSODs are unevenly distributed across 5 of the 9 chromosomes. Phylogenetic analysis showed that SOD proteins could be divided into two major categories (Cu/ZnSODs and Fe-MnSODs), containing seven subgroups, from foxtail millet and other plant species. SOD genes have conserved motif and exon/intron composition in the same subgroup among Setaria italica, Setaria viridis, and Oryza sativa. Additionally, many cis-elements that respond to different stressors were distributed at different densities in the promoters of 8 SiSODs. The expression patterns of SiSODs in different tissues and different abiotic stressors indicated that the SiSODs may play important roles in reactive oxygen species scavenging, caused by various stressors in foxtail millet. This study provides a foundation for the further cloning and functional verification of the SOD gene family response to environmental stimuli in foxtail millet.
Collapse
Affiliation(s)
- Tao Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan 455000 China
| | - Hui Song
- Anyang Academy of Agriculture Sciences, Anyang, Henan 455000 China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858 USA
| | - Quanwei Lu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan 455000 China
| | - Zhen Liu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan 455000 China
| | - Shulin Zhang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan 455000 China
| | - Ruilin Guo
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan 455000 China
| | - Cong Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan 455000 China
| | - Zilin Zhao
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan 455000 China
| | - Jinrong Liu
- Anyang Academy of Agriculture Sciences, Anyang, Henan 455000 China
| | - Renhai Peng
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan 455000 China
| |
Collapse
|
9
|
Liu X, Mei W, Soltis PS, Soltis DE, Barbazuk WB. Detecting alternatively spliced transcript isoforms from single-molecule long-read sequences without a reference genome. Mol Ecol Resour 2017; 17:1243-1256. [PMID: 28316149 DOI: 10.1111/1755-0998.12670] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 01/11/2023]
Abstract
Alternative splicing (AS) is a major source of transcript and proteome diversity, but examining AS in species without well-annotated reference genomes remains difficult. Research on both human and mouse has demonstrated the advantages of using Iso-Seq™ data for isoform-level transcriptome analysis, including the study of AS and gene fusion. We applied Iso-Seq™ to investigate AS in Amborella trichopoda, a phylogenetically pivotal species that is sister to all other living angiosperms. Our data show that, compared with RNA-Seq data, the Iso-Seq™ platform provides better recovery on large transcripts, new gene locus identification and gene model correction. Reference-based AS detection with Iso-Seq™ data identifies AS within a higher fraction of multi-exonic genes than observed for published RNA-Seq analysis (45.8% vs. 37.5%). These data demonstrate that the Iso-Seq™ approach is useful for detecting AS events. Using the Iso-Seq-defined transcript collection in Amborella as a reference, we further describe a pipeline for detection of AS isoforms from PacBio Iso-Seq™ without using a reference sequence (de novo). Results using this pipeline show a 66%-76% overall success rate in identifying AS events. This de novoAS detection pipeline provides a method to accurately characterize and identify bona fide alternatively spliced transcripts in any nonmodel system that lacks a reference genome sequence. Hence, our pipeline has huge potential applications and benefits to the broader biology community.
Collapse
Affiliation(s)
- Xiaoxian Liu
- Department of Biology, University of Florida, Gainesville, FL, 32611-8525, USA.,Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611-7800, USA
| | - Wenbin Mei
- Department of Biology, University of Florida, Gainesville, FL, 32611-8525, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611-7800, USA.,Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, FL, 32611-8525, USA.,Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611-7800, USA.,Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - W Brad Barbazuk
- Department of Biology, University of Florida, Gainesville, FL, 32611-8525, USA.,Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
10
|
Feng X, Chen F, Liu W, Thu MK, Zhang Z, Chen Y, Cheng C, Lin Y, Wang T, Lai Z. Molecular Characterization of MaCCS, a Novel Copper Chaperone Gene Involved in Abiotic and Hormonal Stress Responses in Musa acuminata cv. Tianbaojiao. Int J Mol Sci 2016; 17:441. [PMID: 27023517 PMCID: PMC4848897 DOI: 10.3390/ijms17040441] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/09/2016] [Accepted: 03/16/2016] [Indexed: 11/25/2022] Open
Abstract
Copper/zinc superoxide dismutases (Cu/ZnSODs) play important roles in improving banana resistance to adverse conditions, but their activities depend on the copper chaperone for superoxide dismutase (CCS) delivering copper to them. However, little is known about CCS in monocots and under stress conditions. Here, a novel CCS gene (MaCCS) was obtained from a banana using reverse transcription PCR and rapid-amplification of cDNA ends (RACE) PCR. Sequence analyses showed that MaCCS has typical CCS domains and a conserved gene structure like other plant CCSs. Alternative transcription start sites (ATSSs) and alternative polyadenylation contribute to the mRNA diversity of MaCCS. ATSSs in MaCCS resulted in one open reading frame containing two in-frame start codons to form two protein versions, which is supported by the MaCCS subcellular localization of in both cytosol and chloroplasts. Furthermore, MaCCS promoter was found to contain many cis-elements associated with abiotic and hormonal responses. Quantitative real-time PCR analysis showed that MaCCS was expressed in all tested tissues (leaves, pseudostems and roots). In addition, MaCCS expression was significantly induced by light, heat, drought, abscisic acid and indole-3-acetic acid, but inhibited by relatively high concentrations of CuSO₄ and under cold treatment, which suggests that MaCCS is involved in abiotic and hormonal responses.
Collapse
Affiliation(s)
- Xin Feng
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Fanglan Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Weihua Liu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Min Kyaw Thu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zihao Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Chunzhen Cheng
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Tianchi Wang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
11
|
Abstract
Allopolyploidy involves hybridization and duplication of divergent parental genomes and provides new avenues for gene expression. The expression levels of duplicated genes in polyploids can show deviation from parental additivity (the arithmetic average of the parental expression levels). Nonadditive expression has been widely observed in diverse polyploids and comprises at least three possible scenarios: (a) The total gene expression level in a polyploid is similar to that of one of its parents (expression-level dominance); (b) total gene expression is lower or higher than in both parents (transgressive expression); and (c) the relative contribution of the parental copies (homeologs) to the total gene expression is unequal (homeolog expression bias). Several factors may result in expression nonadditivity in polyploids, including maternal-paternal influence, gene dosage balance, cis- and/or trans-regulatory networks, and epigenetic regulation. As our understanding of nonadditive gene expression in polyploids remains limited, a new generation of investigators should explore additional phenomena (i.e., alternative splicing) and use other high-throughput "omics" technologies to measure the impact of nonadditive expression on phenotype, proteome, and metabolome.
Collapse
Affiliation(s)
- Mi-Jeong Yoo
- Department of Biology, University of Florida, Gainesville, Florida 32611-8525; , ,
| | | | | | | | | |
Collapse
|